toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.; Monrabal, F.; Rodriguez, J.; Toledo, J.F. url  doi
openurl 
  Title Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P09011 - 18pp  
  Keywords Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Noble liquid detectors (scintillation ionization, double-phase); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.  
  Address (up) [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, P.; Rodriguez, J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387862300011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2866  
Permanent link to this record
 

 
Author NEXT Collaboration (Rogers, L. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo-Luque, C; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title High voltage insulation and gas absorption of polymers in high pressure argon and xenon gases Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P10002 - 19pp  
  Keywords Gaseous detectors; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which still await proper characterization in high pressure noble gas environments. As HPGTPCs increase in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM and UHMW in argon and xenon, including studying gas absorption, swelling and high voltage insulation strength.  
  Address (up) [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: leslie.rogers@mavs.uta.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000445999500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3744  
Permanent link to this record
 

 
Author Hiti, B.; Cindro, V.; Gorisek, A.; Franks, M.; Marco-Hernandez, R.; Kramberger, G.; Mandic, I.; Mikuz, M.; Powell, S.; Steininger, H.; Vilella, E.; Zavrtanik, M.; Zhang, C. url  doi
openurl 
  Title Characterisation of analogue front end and time walk in CMOS active pixel sensor Type Journal Article
  Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 12 Pages P12020 - 12pp  
  Keywords Charge induction; Radiation-hard detectors; Solid state detectors  
  Abstract In this work we investigated a method to determine time walk in an active silicon pixel sensor prototype using Edge-TCT with infrared laser charge injection. Samples were investigated before and after neutron irradiation to 5 . 10(14) n(eq)/cm(2). Threshold, noise and calibration of the analogue front end were determined with external charge injection. A spatially sensitive measurement of collected charge and time walk was carried out with Edge-TCT, showing a uniform charge collection and output delay in pixel centre. On pixel edges charge sharing was observed due to finite beam width resulting in smaller signals and larger output delay. Time walk below 25 ns was observed for charge above 2000 e(-) at a threshold above the noise level. Time walk measurement with external charge injection yielded identical results.  
  Address (up) [Hiti, B.; Cindro, V.; Gorisek, A.; Kramberger, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.] Jozef Stefan Inst, Jamova Cesta 39, Ljubljana, Slovenia, Email: bojan.hiti@ijs.si  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000758055400055 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5138  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Operation and performance of the ATLAS semiconductor tracker in LHC Run 2 Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 1 Pages P01013 - 56pp  
  Keywords Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Radiation damage to detector materials (solid state); Solid state detectors  
  Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015-2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb(-1) to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. '  
  Address (up) [Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000766149300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5174  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Bernabeu Verdu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia-Argos, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Operation and performance of the ATLAS semiconductor tracker Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P08009 - 73pp  
  Keywords Solid state detectors; Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.  
  Address (up) [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341927600037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1945  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva