toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. doi  openurl
  Title The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays Type Journal Article
  Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 6 Issue Pages P01003 - 16pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Particle detectors  
  Abstract Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.  
  Address (up) [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291345600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 646  
Permanent link to this record
 

 
Author NEXT Collaboration (Renner, J. et al); Martinez-Lema, G.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Rodriguez, J.; Romo-Luque, C.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Initial results on energy resolution of the NEXT-White detector Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P10020 - 14pp  
  Keywords Large detector-systems performance; Analysis and statistical methods; Double-beta decay detectors; Time projection chambers  
  Abstract One of the major goals of the NEXT-White (NEW) detector is to demonstrate the energy resolution that an electroluminescent high pressure xenon TPC can achieve for high energy tracks. For this purpose, energy calibrations with Cs-137 and Th-232 sources have been carried out as a part of the long run taken with the detector during most of 2017. This paper describes the initial results obtained with those calibrations, showing excellent linearity and an energy resolution that extrapolates to approximately 1% FWHM at Q(beta beta).  
  Address (up) [Adams, C.; Guenette, R.; Martin-Albo, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: josren@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000447691000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3775  
Permanent link to this record
 

 
Author Agaras, M.N. et al; Fiorini, L. url  doi
openurl 
  Title Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2 Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 6 Pages P06023 - 35pp  
  Keywords Calorimeter methods; Photon detectors for UV; visible and IR photons (vacuum) (photomultipliers; HPDs; others); Calorimeters; Scintillators; scintillation and light emission processes (solid; gas and liquid scintillators)  
  Abstract This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current.  
  Address (up) [Agaras, M. N.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain, Email: rute.pedro@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001108200700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5970  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J. J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J. D.; Zuñiga, J. url  doi
openurl 
  Title KM3NeT broadcast optical data transport system Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 2 Pages T02001 - 22pp  
  Keywords Cherenkov detectors; Data Processing; Large detector systems for particle and astroparticle physics; Optics  
  Abstract The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.  
  Address (up) [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000989217700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5565  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The KM3NeT multi-PMT optical module Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 7 Pages P07038 - 28pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors  
  Abstract The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.  
  Address (up) [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: km3net-pc@km3net.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898568200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5449  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Muñoz Perez, D.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 11 Pages P11027 - 18pp  
  Keywords Cherenkov detectors; Manufacturing; Overall mechanics design (support structures and materials, vibration analysis etc); Special cables  
  Abstract KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings – detection units or strings – equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema (R) ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.  
  Address (up) [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: eberbee@km3net.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595650800015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4632  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Event reconstruction for KM3NeT/ORCA using convolutional neural networks Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 10 Pages P10005 - 39pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors; Performance of High Energy Physics Detectors  
  Abstract The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.  
  Address (up) [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: thomas.eberl@fau.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000577278000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4570  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo, D.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Olcina, I.; Real, D.; Sanchez Garcia, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. doi  openurl
  Title A method to stabilise the performance of negatively fed KM3NeT photomultipliers Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P12014 - 12pp  
  Keywords Instrument optimisation; Large detector systems for particle and astroparticle physics; Neutrino detectors; Photon detectors for UV, visible and IR photons (gas) (gas-photocathodes, solid-photocathodes)  
  Abstract The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulation.  
  Address (up) [Albert, A.; Belias, A.; Biagioni, A.; Capone, A.; Coleiro, A.; Cosquer, A.; Creusot, A.; D'Amico, A.; D'Onofrio, A.; Enzenhofer, A.; Grmek, A.; Heijboer, A.; Kappes, A.; Kouchner, A.; Leisos, A.; Miraglia, A.] Accademia Navale Livorno, I-57100 Livorno, Italy, Email: spokesperson@km3net.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000395732500014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3041  
Permanent link to this record
 

 
Author Alesini, D.; Boni, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Palumbo, L.; Spizzo, V.; Mostacci, A.; Campogiani, G.; Persichelli, S.; Enomoto, A.; Higo, T.; Kakihara, K.; Kamitani, T.; Matsumoto, S.; Sugimura, T.; Yokoyama, K.; Verdu-Andres, S. doi  openurl
  Title The C-Band accelerating structures for SPARC photoinjector energy upgrade Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages P05004 - 24pp  
  Keywords Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators); Accelerator Subsystems and Technologies; Instrumentation for FEL  
  Abstract The use of C-Band structures for electron acceleration and production of high quality beams has been proposed and adopted in several linac projects all over the world. The two main projects that adopted such type of structures are the Japanese Free Electron Laser (FEL) project in Spring-8 and the SwissFEL project at Paul Scherrer Institute (PSI). Also the energy upgrade of the SPARC photo-injector at LNF-INFN (Italy) from 150 to more than 240 MeV will be done by replacing a low gradient S-Band accelerating structure with two C-band structures. The structures are Traveling Wave (TW) and Constant Impedance (CI), have symmetric axial input couplers and have been optimized to work with a SLED RF input pulse. The paper presents the design criteria of the structures, the realization procedure and the low and high power RF test results on a prototype. The high power tests have been carried out by the Frascati INFN Laboratories in close collaboration with the Japanese Laboratory KEK. Experimental results confirmed the feasibility of the operation of the prototype at 50 MV/m with about 10(6) breakdowns per pulse per meter. Such high gradients have not been reached before in C-Band systems and demonstrated the possibility to use C-band accelerators, if needed, at such high field level. The results of the internal inspection of the structure after the high power test are also presented.  
  Address (up) [Alesini, D.; Boni, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.] Ist Nazl Fis Nucl, LNF, I-00044 Rome, Italy, Email: alesini@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320726000014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1512  
Permanent link to this record
 

 
Author Unno, Y. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U. doi  openurl
  Title Specifications and pre-production of n plus -in-p large-format strip sensors fabricated in 6-inch silicon wafers, ATLAS18, for the Inner Tracker of the ATLAS Detector for High-Luminosity Large Hadron Collider Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 3 Pages T03008 - 29pp  
  Keywords Particle tracking detectors (Solid-state detectors); Radiation-hard detectors; Si microstrip and pad detectors  
  Abstract The ATLAS experiment is constructing new all-silicon inner tracking system for HL-LHC. The strip detectors cover the radial extent of 40 to 100 cm. A new approach is adopted to use p-type silicon material, making the readout in n+-strips, so-called n+-in-p sensors. This allows for enhanced radiation tolerance against an order of magnitude higher particle fluence compared to the LHC. To cope with varying hit rates and occupancies as a function of radial distance, there are two barrel sensor types, the short strips (SS) for the inner 2 and the long strips (LS) for the outer 2 barrel cylinders, respectively. The barrel sensors exhibit a square, 9.8 x 9.8 cm2, geometry, the largest possible sensor area from a 6-inch wafer. The strips are laid out in parallel with a strip pitch of 75.5 μm and 4 or 2 rows of strip segments. The strips are AC-coupled and biased via polysilicon resistors. The endcap sensors employ a “stereo-annulus” geometry exhibiting a skewed-trapezoid shapes with circular edges. They are designed in 6 unique shapes, R0 to R5, corresponding to progressively increasing radial extents and which allows them to fit within the petal geometry and the 6-inch wafer maximally. The strips are in fan-out geometry with an in-built rotation angle, with a mean pitch of approximately 75 μm and 4 or 2 rows of strip segments. The eight sensor types are labeled as ATLAS18xx where xx stands for SS, LS, and R0 to R5. According to the mechanical and electrical specifications, CAD files for wafer processing were laid out, following the successful designs of prototype barrel and endcap sensors, together with a number of optimizations. A pre-production was carried out prior to the full production of the wafers. The quality of the sensors is reviewed and judged excellent through the test results carried out by vendor. These sensors are used for establishing acceptance procedures and to evaluate their performance in the ATLAS collaboration, and subsequently for pre-production of strip modules and stave and petal structures.  
  Address (up) [Allport, P. P.; Chisholm, A.; George, W.; Gonella, L.; Kopsalis, I.; Lomas, J.] Univ Birmingham, Sch Phys & Astron, Birmingham B152TT, England, Email: yoshinobu.unno@kek.jp  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000974242700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5522  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva