|   | 
Details
   web
Records
Author Bridges, M.; Cranmer, K.; Feroz, F.; Hobson, M.; Ruiz de Austri, R.; Trotta, R.
Title A coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniques Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 012 - 23pp
Keywords Supersymmetry; Phenomenology
Abstract We assess the coverage properties of confidence and credible intervals on the CMSSM parameter space inferred from a Bayesian posterior and the profile likelihood based on an ATLAS sensitivity study. In order to make those calculations feasible, we introduce a new method based on neural networks to approximate the mapping between CMSSM parameters and weak-scale particle masses. Our method reduces the computational effort needed to sample the CMSSM parameter space by a factor of similar to 10(4) with respect to conventional techniques. We find that both the Bayesian posterior and the profile likelihood intervals can significantly over-cover and identify the origin of this effect to physical boundaries in the parameter space. Finally, we point out that the effects intrinsic to the statistical procedure are conflated with simplifications to the likelihood functions from the experiments themselves.
Address (up) [Bridges, Michael; Feroz, Farhan; Hobson, Mike] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England, Email: mb435@mrao.cam.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295200012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 610
Permanent link to this record
 

 
Author Bruhnke, M.; Herrmann, B.; Porod, W.
Title Signatures of bosonic squark decays in non-minimally flavour-violating supersymmetry Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 006 - 35pp
Keywords Supersymmetry Phenomenology
Abstract We investigate couplings of squarks to gauge and Higgs-bosons within the framework of non-minimal flavour violation in the Minimal Supersymmetric Standard Model. Introducing non-diagonal elements in the mass matrices of squarks, we first study their impact on the self-energies and physical mass eigenvalues of squarks. We then present an extensive analysis of bosonic squark decays for variations of the flavour-violating parameters around the two benchmark scenarios SPS1a' and SPS1b. Signatures, that would be characteristic for a non-minimal flavour structure in the squark sector, can be found in wide regions of the parameter space.
Address (up) [Bruhnke, Matthias; Herrmann, Bjoern; Porod, Werner] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: mbruhnke@physik.uni-wuerzburg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000282370900051 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 342
Permanent link to this record
 

 
Author Buchta, S.; Chachamis, G.; Draggiotis, P.; Malamos, I.; Rodrigo, G.
Title On the singular behaviour of scattering amplitudes in quantum field theory Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 014 - 13pp
Keywords QCD Phenomenology; NLO Computations
Abstract We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.
Address (up) [Buchta, Sebastian; Chachamis, Grigorios; Malamos, Ioannis; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: sbuchta@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000344788000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2065
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, A.; Ruiz de Austri, R.; Bertone, G.
Title LHC and dark matter phenomenology of the NUGHM Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 114 - 39pp
Keywords Supersymmetry Phenomenology
Abstract We present a Bayesian analysis of the NUGHM, a supersymmetric scenario with non-universal gaugino masses and Higgs masses, including all the relevant experimental observables and dark matter constraints. The main merit of the NUGHM is that it essentially includes all the possibilities for dark matter (DM) candidates within the MSSM, since the neutralino and chargino spectrum -and composition- are as free as they can be in the general MSSM. We identify the most probable regions in the NUHGM parameter space, and study the associated phenomenology at the LHC and the prospects for DM direct detection. Requiring that the neutralino makes all of the DM in the Universe, we identify two preferred regions around m(chi 10) = 1 TeV, 3 TeV, which correspond to the (almost) pure Higgsino and wino case. There exist other marginal regions (e.g. Higgs-funnel), but with much less statistical weight. The prospects for detection at the LHC in this case are quite pessimistic, but future direct detection experiments like LUX and XENON1T, will be able to probe this scenario. In contrast, when allowing other DM components, the prospects for detection at the LHC become more encouraging – the most promising signals being, beside the production of gluinos and squarks, the production of the heavier chargino and neutralino states, which lead to WZ and same-sign WW final states – and direct detection remains a complementary, and even more powerful, way to probe the scenario.
Address (up) [Cabrera, Maria Eugenia; Bertone, Gianfranco] Univ Amsterdam, Inst Theoret Phys, GRAPPA, NL-1018 XE Amsterdam, Netherlands, Email: mcabrera@if.usp.br;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000346771200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2063
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R.
Title The health of SUSY after the Higgs discovery and the XENON100 data Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 182 - 47pp
Keywords Supersymmetry Phenomenology
Abstract We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detect at LHC, this does not necessarily mean that is very fine-tuned. We use Bayesian techniques to show the experimental Higgs mass is at similar to 2 sigma off the CMSSM or NUHM expectation. This is substantial but not dramatic. Although the CMSSM or the NUHM are unlikely to show up at the LHC, they are still interesting and plausible models after the Higgs observation; and, if they are true, the chances of discovering them in future dark matter experiments are quite high.
Address (up) [Cabrera, Maria Eugenia] Univ Amsterdam, Inst Theoret Phys, GRAPPA, NL-1012 WX Amsterdam, Netherlands, Email: M.E.CabreraCatalan@uva.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202900095 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1572
Permanent link to this record