Garcia Canal, C. A., Tarutina, T., & Vento, V. (2017). Deuteron structure in the deep inelastic regime. Eur. Phys. J. A, 53(6), 118–5pp.
Abstract: We study nuclear effects in the deuteron in the deep inelastic regime using the newest available data. We put special emphasis on their Q(2) dependence. The study is carried out using a scheme which parameterizes, in a simple manner, these effects by changing the proton and neutron stucture functions in medium. The result of our analysis is compared with other recent proposals. We conclude that precise EMC ratios cannot be obtained without considering the nuclear effects in the deuteron.
|
Garcia Canal, C. A., Tarutina, T., & Vento, V. (2013). Nuclear and partonic dynamics in the EMC effect. Eur. Phys. J. A, 49(8), 105–5pp.
Abstract: It has been recently confirmed that the magnitude of the EMC effect measured in the electron deep inelastic scattering is linearly related to the short-range correlation scaling factor obtained from electron inclusive scattering. By using a x-rescaling approach we are able to understand the interplay between the quark-gluon and hadronic degrees of freedom in the discussion of the EMC effect.
|
Gonzalez, P., Mathieu, V., & Vento, V. (2011). Heavy meson interquark potential. Phys. Rev. D, 84(11), 114008–7pp.
Abstract: The resolution of Dyson-Schwinger equations leads to the freezing of the QCD running coupling (effective charge) in the infrared, which is best understood as a dynamical generation of a gluon mass function, giving rise to a momentum dependence which is free from infrared divergences. We calculate the interquark static potential for heavy mesons by assuming that it is given by a massive One Gluon Exchange interaction and compare with phenomenologyical fits inspired by lattice QCD. We apply these potential forms to the description of quarkonia and conclude that, even though some aspects of the confinement mechanism are absent in the Dyson-Schwinger formalism, the spectrum can be reasonably reproduced. We discuss possible explanations for this outcome.
|
Ayala, C., Gonzalez, P., & Vento, V. (2016). Heavy quark potential from QCD-related effective coupling. J. Phys. G, 43(12), 125002–12pp.
Abstract: We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.
|
Kiesewetter, S., & Vento, V. (2010). eta-eta '-glueball mixing. Phys. Rev. D, 82(3), 034003–13pp.
Abstract: We have revisited glueball mixing with the pseudoscalar mesons in the MIT bag model scheme. The calculation has been performed in the spherical cavity approximation to the bag using two different fermion propagators, the cavity and the free propagators. We obtain probabilities of mixing for the eta at the level of 0.006%-2.0%, while for the eta' one at the level of 0.6%-40%, depending on the choice of bag radius and, therefore, of the strong coupling constant. Our results differ from previous calculations. The origin of our difference stems from the treatment of the time integrations. The comparison of our calculation with experimental data, which is consistent with small eta – eta' – G mixing, implies that the pseudoscalar glueball is small, R similar to 0.5-0.6 fm and has a large mass, M-G similar to 2000-2500 MeV.
|
Kochelev, N. I., & Vento, V. (2010). Gluonic components of the pion and the transition form factor gamma*gamma* -> pi(0). Phys. Rev. D, 81(3), 034009–5pp.
Abstract: We propose an effective Lagrangian for the coupling of the neutral pion with gluons whose strength is determined by a low-energy theorem. We calculate the contribution of the gluonic components arising from this interaction to the pion transition form factor gamma*gamma* -> pi(0) using the instanton liquid model to describe the quantum chromodynamics vacuum. We find that this contribution is large and might explain the anomalous behavior of the form factor at large virtuality of one of the photons, a feature which was recently discovered by the BABAR Collaboration.
|
Mantovani-Sarti, V., Drago, A., Vento, V., & Park, B. Y. (2013). The Baryon Number Two System in the Chiral Soliton Model. Few-Body Syst., 54(1-4), 513–516.
Abstract: We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.
|
Mantovani-Sarti, V., Park, B. Y., & Vento, V. (2013). The Soliton-Soliton Interaction in the Chiral Dilaton Model. Int. J. Mod. Phys. A, 28(27), 1350136–19pp.
Abstract: We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the pi and sigma fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.
|
Mathieu, V., & Vento, V. (2010). Pseudoscalar glueball and eta-eta ' mixing. Phys. Rev. D, 81(3), 034004–12pp.
Abstract: We have performed a dynamical analysis of the mixing in the pseudoscalar channel with the goal of understanding the existence and behavior of the pseudoscalar glueball. Our philosophy has not been to predict precise values of the glueball mass but to exploit an adequate effective theory to the point of breaking and to analyze which kind of mechanisms restore compatibility with data. Our study has led to analytical solutions which allow a clear understanding of the phenomena. The outcome of our calculation leads to a large mass glueball M-Theta > 2000 MeV, to a large glue content of the eta ', and to mixing angles in agreement with previous numerical studies.
|
Mathieu, V., & Vento, V. (2010). eta-eta ' mixing in the flavor basis and large N. Phys. Lett. B, 688(4-5), 314–318.
Abstract: The mass matrix for eta-eta' is derived in the flavor basis at O(p(4)) of the chiral Lagrangian using the large N approximation. Under certain assumptions, the mixing angle phi = 41.4 degrees and the decay constants ratio f(K)/f(pi) = 1.15 are calculated in agreement with the data. It appears that the FKS scheme arises as a special limit of the chiral Lagrangian. Their mass matrix is obtained without the hypothesis on the mixing pattern of the decay constants.
|