|   | 
Details
   web
Records
Author Chen, P.; Ding, G.J.; Rojas, A.D.; Vaquera-Araujo, C.A.; Valle, J.W.F.
Title Warped flavor symmetry predictions for neutrino physics Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 007 - 27pp
Keywords Quark Masses and SM Parameters; Neutrino Physics; Discrete and Finite Symmetries
Abstract A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Delta(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.
Address (up) [Chen, Peng; Ding, Gui-Jun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000367831200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2518
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F.
Title CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 036 - 27pp
Keywords CP violation; Discrete Symmetries; Neutrino Physics
Abstract We analyze the possible generalized CP symmetries admitted by the Tri-Bi-Maximal (TBM) neutrino mixing. Taking advantage of these symmetries we construct in a systematic way other variants of the standard TBM Ansatz. Depending on the type and number of generalized CP symmetries imposed, we get new mixing matrices, all of which related to the original TBM matrix. One of such revamped TBM variants is the recently discussed mixing matrix of arXiv:1806.03367. We also briefly discuss the phenomenological implications following from these mixing patterns.
Address (up) [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000460751400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3941
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R.
Title Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 8 Pages 083110 - 7pp
Keywords neutrino masses; dark matter; symmetries; scotogenic
Abstract We demonstrate that a scotogenic dark symmetry can be obtained as a residual subgroup of the global U(1)(B-L) symmetry already present in the Standard Model. In addition, we propose a general framework in which the U(1)(B-L) symmetry is spontaneously broken into an even Z(2n) subgroup, setting the general conditions for neutrinos to be Majorana and for dark matter stability to exist in terms of the residual Z(2n). As an example, under this general framework, we build a class of simple models where, in a scotogenic manner, the dark matter candidate is the lightest particle running inside the mass loop of a neutrino. The global U(1)(B-L) symmetry in our framework, being anomaly free, can also be gauged in a straightforward manner leading to a richer phenomenology.
Address (up) [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000557423400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4494
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Medina, O.
Title Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 080 - 23pp
Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter
Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.
Address (up) [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000867661300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5387
Permanent link to this record
 

 
Author de Azcarraga, J.A.; Fedoruk, S.; Izquierdo, J.M.; Lukierski, J.
Title Two-twistor particle models and free massive higher spin fields Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 010 - 39pp
Keywords Field Theories in Lower Dimensions; Higher Spin Symmetry; Extended Supersymmetry; Space-Time Symmetries
Abstract We present D = 3 and D = 4 world-line models for massive particles moving in a new type of enlarged spacetime, with D-1 additional vector coordinates, which after quantization lead to towers of massive higher spin (HS) free fields. Two classically equivalent formulations are presented: one with a hybrid spacetime/bispinor variables and a second described by a free two-twistor dynamics with constraints. After first quantization in the D = 3 and D = 4 cases, the wave functions satisfying a massive version of Vasiliev's free unfolded equations are given as functions on the SL(2, R) and SL(2, C) group manifolds respectively, which describe arbitrary on-shell momenta and spin degrees of freedom. Further we comment on the D = 6 case, and possible supersymmetric extensions are mentioned as well. Finally, the description of interactions and the Ads/crr duality are briefly considered for massive IHS fields.
Address (up) [de Azcarraga, J. A.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000356852000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2293
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Queiroz, F.S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title The dark side of flipped trinification Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 143 - 31pp
Keywords Cosmology of Theories beyond the SM; Discrete Symmetries; Gauge Symmetry
Abstract We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.
Address (up) [Dong, P. V.; Huong, D. T.] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam, Email: pvdong@iop.vast.ac.vn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000432044000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3576
Permanent link to this record
 

 
Author Drewes, M.; Georis, Y.; Hagedorn, C.; Klaric, J.
Title Low-scale leptogenesis with flavour and CP symmetries Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 044 - 113pp
Keywords Baryo-and Leptogenesis; Discrete Symmetries; Flavour Symmetries; Sterile or Heavy Neutrinos
Abstract We consider a type-I seesaw framework endowed with a flavour symmetry, belonging to the series of non-abelian groups increment (3 n(2)) and increment (6 n(2)), and a CP symmetry. Breaking these symmetries in a non-trivial way results in the right-handed neutrinos being degenerate in mass up to possible (further symmetry-breaking) splittings kappa and lambda, while the neutrino Yukawa coupling matrix encodes the entire flavour structure in the neutrino sector. For a fixed combination of flavour and CP symmetry and residual groups, this matrix contains five real free parameters. Four of them are determined by the light neutrino mass spectrum and by accommodating experimental data on lepton mixing well, while the angle theta(R) is related to right-handed neutrinos. We scrutinise for all four lepton mixing patterns, grouped into Case 1) through Case 3 b.1), the potential to generate the baryon asymmetry of the Universe through low-scale leptogenesis numerically and analytically. The main results are: a) the possible correlation of the baryon asymmetry and the Majorana phases, encoded in the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix, in certain instances; b) the possibility to generate the correct amount of baryon asymmetry for vanishing splittings kappa and lambda among the right-handed neutrinos as well as for large kappa, depending on the case and the specific choice of group theory parameters; c) the chance to produce sufficient baryon asymmetry for large active-sterile mixing angles, enabling direct experimental tests at current and future facilities, if theta(R) is close to a special value, potentially protected by an enhanced residual symmetry. We elucidate these results with representative examples of flavour and CP symmetries, which all lead to a good agreement with the measured values of the lepton mixing angles and, possibly, the current indication of the CP phase delta. We identify the CP-violating combinations relevant for low-scale leptogenesis, and show that the parametric dependence of the baryon asymmetry found in the numerical study can be understood well with their help.
Address (up) [Drewes, M.; Georis, Y.; Klaric, J.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain La Neuve, Belgium, Email: marco.drewes@uclouvain.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000898830800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5435
Permanent link to this record
 

 
Author Emmanuel-Costa, D.; Simoes, C.; Tortola, M.
Title The minimal adjoint-SU (5) x Z(4) GUT model Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 054 - 30pp
Keywords Neutrino Physics; GUT; Discrete and Finite Symmetries
Abstract An extension of the adjoint SU (5) model with a flavour symmetry based on the Z(4) group is investigated. The Z(4) symmetry is introduced with the aim of leading the up-and down-quark mass matrices to the Nearest-Neighbour-Interaction form. As a consequence of the discrete symmetry embedded in the SU (5) gauge group, the charged lepton mass matrix also gets the same form. Within this model, light neutrinos get their masses through type-I, type-III and one-loop radiative seesaw mechanisms, implemented, respectively, via a singlet, a triplet and an octet from the adjoint fermionic 24 fields. It is demonstrated that the neutrino phenomenology forces the introduction of at least three 24 fermionic multiplets. The symmetry SU (5) x Z(4) allows only two viable zero textures for the effective neutrino mass matrix. It is showed that one texture is only compatible with normal hierarchy and the other with inverted hierarchy in the light neutrino mass spectrum. Finally, it is also demonstrated that Z(4) freezes out the possibility of proton decay through exchange of coloured Higgs triplets at tree-level.
Address (up) [Emmanuel-Costa, D.; Simoes, C.] Univ Lisbon, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: david.costa@ist.utl.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000325495200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1604
Permanent link to this record
 

 
Author Escribano, P.; Hirsch, M.; Nava, J.; Vicente, A.
Title Observable flavor violation from spontaneous lepton number breaking Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 098 - 31pp
Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries
Abstract We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.
Address (up) [Escribano, Pablo; Hirsch, Martin; Nava, Jacopo; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrcit Jose Beltrcin 2, E-46980 Valencia, Spain, Email: pablo.escribano@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000744514600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5084
Permanent link to this record
 

 
Author Flores-Tlalpa, A.; Lopez Castro, G.; Roig, P.
Title Five-body leptonic decays of muon and tau lepton Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 185 - 21pp
Keywords CP violation; Discrete Symmetries; Effective field theories; Precision QED
Abstract We study the five-body decays u(-) -> e(-)e(+)e(-)nu u (nu) over bar (e) and tau(-) -> l(-)l'+l'-nu(tau)(nu) over bar (l) for l, l' = e, u within the Standard Model (SM) and in a general effective field theory description of the weak interactions at low energies. We compute the branching ratios and compare our results with two previous – mutually discrepan – SM calculations. By assuming a general structure for the weak currents we derive the expressions for the energy and angular distributions of the three charged leptons when the decaying lepton is polarized, which will be useful in precise tests of the weak charged current at Belle II. In these decays, leptonic T-odd correlations in triple products of spin and momenta – which may signal time reversal violation in the leptonic sector – are suppressed by the tiny neutrino masses. Therefore, a measurement of such T-violating observables would be associated to neutrinoless lepton flavor violating (LFV) decays, where this effect is not extremely suppressed. We also study the backgrounds that the SM five-lepton lepton decays constitute to searches of LFV L- -> ? l(-)l'+l'(-) decays. Searches at high values of the invariant mass of the l'(+)l'(-) pair look the most convenient way to overcome the background.
Address (up) [Flores-Tlalpa, A.] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico, Email: alain@fisica.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000411265800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3501
Permanent link to this record