|   | 
Details
   web
Records
Author Alvarez Melcon, A. et al; Gimeno, B.
Title First results of the CAST-RADES haloscope search for axions at 34.67 μeV Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 075 - 16pp
Keywords Dark matter; Dark Matter and Double Beta Decay (experiments); Exotics
Abstract We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g(a gamma) greater than or similar to 4 x 10(-13) GeV-1 over a mass range of 34.6738 μeV < m(a)< 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.
Address (up) [Alvarez Melcon, A.; Diaz-Morcillo, A.; Garcia Barcelo, J. M.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Murcia 30203, Spain, Email: sergio.arguedas.cuendis@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000705229500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4993
Permanent link to this record
 

 
Author Amoroso, S.; Caron, S.; Jueid, A.; Ruiz de Austri, R.; Skands, P.
Title Estimating QCD uncertainties in Monte Carlo event generators for gamma-ray dark matter searches Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 007 - 44pp
Keywords dark matter simulations; dark matter theory; gamma ray theory
Abstract Motivated by the recent galactic center gamma-ray excess identified in the Fermi-LAT data, we perform a detailed study of QCD fragmentation uncertainties in the modeling of the energy spectra of gamma-rays from Dark-Matter (DM) annihilation. When Dark-Matter particles annihilate to coloured final states, either directly or via decays such as W(*) -> qq-', photons are produced from a complex sequence of shower, hadronisation and hadron decays. In phenomenological studies their energy spectra are typically computed using Monte Carlo event generators. These results have however intrinsic uncertainties due to the specific model used and the choice of model parameters, which are difficult to asses and which are typically neglected. We derive a new set of hadronisation parameters (tunes) for the PYTHIA 8.2 Monte Carlo generator from a fit to LEP and SLD data at the Z peak. For the first time we also derive a conservative set of uncertainties on the shower and hadronisation model parameters. Their impact on the gamma-ray energy spectra is evaluated and discussed for a range of DM masses and annihilation channels. The spectra and their uncertainties are also provided in tabulated form for future use. The fragmentation-parameter uncertainties may be useful for collider studies as well.
Address (up) [Amoroso, Simone] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: simone.amoroso@desy.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000467288200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4006
Permanent link to this record
 

 
Author Andreev, Y.M. et al; Molina Bueno, L.; Tuzi, M.
Title Measurement of the intrinsic hadronic contamination in the NA64-e high-purity e+/e- beam at CERN Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1057 Issue Pages 168776 - 8pp
Keywords Light dark matter; Missing-energy experiment; H4 beamline; Hadron contamination
Abstract We present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c. The analysis, performed using data collected by the NA64-e experiment in 2022, is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64 detector. We determined the contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those from a dedicated setup, in which only hadrons impinged on the detector. We also obtained an estimate of the relative protons, antiprotons and pions yield by exploiting the different absorption probabilities of these particles in matter. We cross-checked our results with a dedicated Monte Carlo simulation for the hadron production at the primary T2 target, finding a good agreement with the experimental measurements.
Address (up) [Andreev, Yu. M.; Chumakov, A. G.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Frolov, V. N.; Gerassimov, S. G.; Gninenko, S. N.; Kachanov, V. A.; Kambar, Y.; Karneyeu, A. E.; Kirsanov, M. M.; Kolosov, V. N.; Gertsenberger, S. V.; Kasianova, E. A.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Mikhailov, Yu. V.; Bueno, L. Molina; Peshekhonov, D. V.; Polyakov, V. A.; Salamatin, K.; Samoylenko, V. D.; Shchukin, D.; Tikhomirov, V. O.; Tlisova, I.; Toropin, A. N.; Trifonov, A. Yu.; Vasilishin, B. I.; Volkov, P. V.; Volkov, V. Yu.; Voronchikhin, I. V.; Zhevlakov, A. S.] CERN, Geneva, Switzerland, Email: pietro.bisio@ge.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001154863600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5923
Permanent link to this record
 

 
Author Aoki, M.; Toma, T.; Vicente, A.
Title Non-thermal production of minimal dark matter via right-handed neutrino decay Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 063 - 19pp
Keywords dark matter theory; gamma ray theory; particle physics – cosmology connection; physics of the early universe
Abstract Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)(L) quintuplet and a scalar SU(2)(L) septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.
Address (up) [Aoki, Mayumi] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan, Email: mayumi@hep.s.kanazawa-u.ac.jp;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365690000063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2479
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A.
Title Physics reach of the XENON1T dark matter experiment Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 027 - 37pp
Keywords dark matter simulations; dark matter experiments
Abstract The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80+/-0.15) . 10(-4) (kg.day.keV)(-1), mainly due to the decay of Rn-222 daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 +/- 0.1) (t.y)(-1) from radiogenic neutrons, (1.8+/-0.3) . 10(-2) (t.y)(-1) from coherent scattering of neutrinos, and less than 0.01 (t.y)(-1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Pro file Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency L-eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 tonne fiducial volume, the sensitivity reaches a minimum cross section of 1.6 . 10(-47) cm(2) at m(chi) = 50 GeV/c(2).
Address (up) [Aprile, E.; Anthony, M.; Contreras, H.; de Perio, P.; Goetzke, L. W.; Greene, Z.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.; Weber, M.; Zhang, Y.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA, Email: cyril.grignon@uni-mainz.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000393286400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2950
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A.
Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P11006 - 20pp
Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)
Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
Address (up) [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000345026000020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2061
Permanent link to this record
 

 
Author Araujo Filho, A.A.
Title Analysis of a regular black hole in Verlinde's gravity Type Journal Article
Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 41 Issue 1 Pages 015003 - 30pp
Keywords Verlinde's emergent gravity; dark matter; shadows; black hole
Abstract This work focuses on the examination of a regular black hole within Verlinde's emergent gravity, specifically investigating the Hayward-like (modified) solution. The study reveals the existence of three horizons under certain conditions, i.e. an event horizon and two Cauchy horizons. Our results indicate regions which phase transitions occur based on the analysis of heat capacity and Hawking temperature. To compute the latter quantity, we utilize three distinct methods: the surface gravity approach, Hawking radiation, and the application of the first law of thermodynamics. In the case of the latter approach, it is imperative to introduce a correction to ensure the preservation of the Bekenstein-Hawking area law. Geodesic trajectories and critical orbits (photon spheres) are calculated, highlighting the presence of three light rings. Additionally, we investigate the black hole shadows. Furthermore, the quasinormal modes are explored using third- and sixth-order Wentzel-Kramers-Brillouin approximations. In particular, we observe stable and unstable oscillations for certain frequencies. Finally, in order to comprehend the phenomena of time-dependent scattering in this scenario, we provide an investigation of the time-domain solution.
Address (up) [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001114102700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5841
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Helo, J.C.; Hirsch, M.; Kovalenko, S.
Title How many 1-loop neutrino mass models are there? Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 023 - 29pp
Keywords Other Weak Scale BSM Models; Models for Dark Matter; Neutrino Interactions
Abstract It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.
Address (up) [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000835685500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5320
Permanent link to this record
 

 
Author Arina, C.; Di Mauro, M.; Fornengo, N.; Heisig, J.; Jueid, A.; Ruiz de Austri, R.
Title CosmiXs: cosmic messenger spectra for indirect dark matter searches Type Journal Article
Year 2024 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 035 - 41pp
Keywords dark matter experiments; dark matter simulations; dark matter theory
Abstract The energy spectra of particles produced from dark matter (DM) annihilation or decay are one of the fundamental ingredients to calculate the predicted fluxes of cosmic rays and radiation searched for in indirect DM detection. We revisit the calculation of the source spectra for annihilating and decaying DM using the VINCIA shower algorithm in PYTHIA to include QED and QCD final state radiation and diagrams for the EW corrections with massive bosons, not present in the default PYTHIA shower model. We take into account the spin information of the particles during the entire EW shower and the off -shell contributions from massive gauge bosons. Furthermore, we perform a dedicated tuning of the VINCIA and PYTHIA parameters to LEP data on the production of pions, photons, and hyperons at the Z resonance and discuss the underlying uncertainties. To enable the use of our results in DM studies, we provide the tabulated source spectra for the most relevant cosmic messenger particles, namely antiprotons, positrons, gamma rays and the three neutrino flavors, for all the fermionic and bosonic channels and DM masses between 5 GeV and 100 TeV, on github.
Address (up) [Arina, Chiara] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium, Email: chiara.arina@uclouvain.be;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001195757300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6041
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K.
Title Impact of COHERENT measurements, cross section uncertainties and new interactions on the neutrino floor Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 055 - 26pp
Keywords dark matter detectors; dark matter experiments; neutrino properties; solar and atmospheric neutrinos
Abstract We reconsider the discovery limit of multi-ton direct detection dark matter experiments in the light of recent measurements of the coherent elastic neutrino-nucleus scattering process. Assuming the cross section to be a parameter entirely determined by data, rather than using its Standard Model prediction, we use the COHERENT CsI and LAr data sets to determine WIMP discovery limits. Being based on a data-driven approach, the results are thus free from theoretical assumptions and fall within the WIMP mass regions where XENONnT and DARWIN have best expected sensitivities. We further determine the impact of subleading nuclear form factor and weak mixing angle uncertainties effects on WIMP discovery limits. We point out that these effects, albeit small, should be taken into account. Moreover, to quantify the impact of new physics effects in the neutrino background, we revisit WIMP discovery limits assuming light vector and scalar mediators as well as neutrino magnetic moments/transitions. We stress that the presence of new interactions in the neutrino sector, in general, tend to worsen the WIMP discovery limit.
Address (up) [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-5,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000751303400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5123
Permanent link to this record