toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D. url  doi
openurl 
  Title Bridging a gap between continuum-QCD and ab initio predictions of hadron observables Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 742 Issue Pages 183-188  
  Keywords Dyson-Schwinger equations; Confinement; Dynamical chiral symmetry breaking; Fragmentation; Gribov copies  
  Abstract Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initioprediction of bound-state properties.  
  Address (up) [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: cdroberts@anl.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350555900026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2156  
Permanent link to this record
 

 
Author CDF Collaboration (Aaltonen, T. et al); Cabrera, S. url  doi
openurl 
  Title Measurement of d sigma/dy of Drell-Yan e(+)e(-) pairs in the Z mass region from p(p)over-bar collisions at root s=1.96 TeV Type Journal Article
  Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 692 Issue 4 Pages 232-239  
  Keywords Z boson; Rapidity d sigma/dy; PDFs  
  Abstract We report on a CDF measurement of the total cross section and rapidity distribution, d sigma/dy, for gamma*/Z -> e(+)e(-) events in the Z boson mass region (66 < M-ee < 116 GeV/c(2)) produced in p (p) over bar collisions at root s = 1.96 TeV with 2.1 fb(-1) of integrated luminosity. The measured cross section of 257 +/- 16 pb and d sigma/dy distribution are compared with Next-to-Leading-Order (NLO) and Next-to-Next-to-Leading-Order (NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and d sigma/dy measurements with theoretical calculations with the most recent NNLO PDFs.  
  Address (up) [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA, Email: bodek@pas.rochester.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282249400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 271  
Permanent link to this record
 

 
Author Bonilla, C.; Fonseca, R.M.; Valle, J.W.F. url  doi
openurl 
  Title Vacuum stability with spontaneous violation of lepton number Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 756 Issue Pages 345-349  
  Keywords  
  Abstract The vacuum of the Standard Model is known to be unstable for the measured values of the top and Higgs masses. Here we show how vacuum stability can be achieved naturally if lepton number is violated spontaneously at the TeV scale. More precise Higgs measurements in the next LHC run should provide a crucial test of our symmetry breaking scenario. In addition, these schemes typically lead to enhanced rates for processes involving lepton flavor violation.  
  Address (up) [Bonilla, Cesar; Fonseca, Renato M.; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373569200053 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2638  
Permanent link to this record
 

 
Author Bonilla, C.; Morisi, S.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Relating quarks and leptons with the T-7 flavour group Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 742 Issue Pages 99-106  
  Keywords  
  Abstract In this letter we present a model for quarks and leptons based on T-7 as flavour symmetry, predicting a canonical mass relation between charged leptons and down-type quarks proposed earlier. Neutrino masses are generated through a Type-I seesaw mechanism, with predicted correlations between the atmospheric mixing angle and neutrino masses. Compatibility with oscillation results leads to lower bounds for the lightest neutrino mass as well as for the neutrinoless double beta decay rates, even for normal neutrino mass hierarchy.  
  Address (up) [Bonilla, Cesar; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350555900016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2155  
Permanent link to this record
 

 
Author Bonilla, C.; Valle, J.W.F. url  doi
openurl 
  Title Naturally light neutrinos in Diracon model Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 762 Issue Pages 162-165  
  Keywords  
  Abstract We propose a simple model for Dirac neutrinos where the smallness of neutrino mass follows from a parameter kappa whose absence enhances the symmetry of the theory. Symmetry breaking is performed in a two-doublet Higgs sector supplemented by a gauge singlet scalar, realizing an accidental global U(1) symmetry. Its spontaneous breaking at the few TeV scale leads to a physical Nambu -Goldstone – boson the Diracon, denoted D – which is restricted by astrophysics and induces invisible Higgs decays such as h -> DD. The scheme provides a rich, yet very simple scenario for symmetry breaking studies at colliders such as the LHC.  
  Address (up) [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388473700022 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2978  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva