|   | 
Details
   web
Records
Author Ferreira, M.N.; Papavassiliou, J.
Title Gauge Sector Dynamics in QCD Type Journal Article
Year 2023 Publication Particles Abbreviated Journal Particles
Volume 6 Issue 1 Pages 312-363
Keywords continuum Schwinger function methods; emergence of hadron mass; gluon mass generation; lattice QCD; non-perturbative quantum field theory; quantum chromodynamics; Schwinger-Dyson equations; Schwinger mechanism
Abstract The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are crucial for the internal consistency of the theory; most notably, they account for the generation of a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex. In the present work, we review some key advances in the ongoing investigation of this sector within the framework of the continuum Schwinger function methods, supplemented by results obtained from lattice simulations.
Address (up) [Ferreira, Mauricio Narciso; Papavassiliou, Joannis] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: ansonar@uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000959126400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5504
Permanent link to this record
 

 
Author Ferrer-Sanchez, A.; Martin-Guerrero, J.; Ruiz de Austri, R.; Torres-Forne, A.; Font, J.A.
Title Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics Type Journal Article
Year 2024 Publication Computer Methods in Applied Mechanics and Engineering Abbreviated Journal Comput. Meth. Appl. Mech. Eng.
Volume 424 Issue Pages 116906 - 18pp
Keywords Riemann problem; Euler equations; Machine learning; Neural networks; Relativistic hydrodynamics
Abstract We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.
Address (up) [Ferrer-Sanchez, Antonio; Martin-Guerrero, JoseD.] ETSE UV, Elect Engn Dept, IDAL, Avgda Univ S-N, Valencia 46100, Spain, Email: Antonio.Ferrer-Sanchez@uv.es
Corporate Author Thesis
Publisher Elsevier Science Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-7825 ISBN Medium
Area Expedition Conference
Notes WOS:001221797400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6126
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F.
Title Present and future of Cosmo Lattice Type Journal Article
Year 2024 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 87 Issue 9 Pages 094901 - 20pp
Keywords early Universe; non-linear dynamics; real-time lattice simulations; cosmology; gauge-invariant lattice techniques; CosmoLattice; gravitational waves
Abstract We discuss the present state and planned updates of Cosmo Lattice, a cutting-edge code for lattice simulations of non-linear dynamics of scalar-gauge field theories in an expanding background. We first review the current capabilities of the code, including the simulation of interacting singlet scalars and of Abelian and non-Abelian scalar-gauge theories. We also comment on new features recently implemented, such as the simulation of gravitational waves from scalar and gauge fields. Secondly, we discuss new extensions of C osmo L attice that we plan to release publicly. We comment on new physics modules, which include axion-gauge interactions phi FF , non-minimal gravitational couplings phi R-2 , creation and evolution of cosmic-defect networks, and magnetohydrodynamics. We also discuss new technical features, including evolvers for non-canonical interactions, arbitrary initial conditions, simulations in 2+1 dimensions, and higher-accuracy spatial derivatives.
Address (up) [Figueroa, Daniel G.; Torrenti, Francisco] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.figueroa@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:001284570700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6219
Permanent link to this record
 

 
Author Forconi, M.; Ruchika; Melchiorri, A.; Mena, O.; Menci, N.
Title Do the early galaxies observed by JWST disagree with Planck's CMB polarization measurements? Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 012 - 16pp
Keywords cosmological parameters from CMBR; high redshift galaxies; CMBR polarisation; reionization
Abstract The recent observations from the James Webb Space Telescope have led to a surprising discovery of a significant density of massive galaxies with masses of M >= 10(10.5)M(circle dot) at redshifts of approximately z similar to 10. This corresponds to a stellar mass density of roughly rho* similar to 10(6)M(circle dot) Mpc(-3). Despite making conservative assumptions regarding galaxy formation, this finding may not be compatible with the standard.CDM cosmology that is favored by observations of CMB Anisotropies from the Planck satellite. In this paper, we confirm the substantial discrepancy with Planck's results within the.CDM framework. Assuming a value of is an element of = 0.2 for the efficiency of converting baryons into stars, we indeed find that the.CDM model is excluded at more than 99.7% confidence level (C.L.). An even more significant exclusion is found for is an element of similar to 0.1, while a better agreement, but still in tension at more than 95%, is obtained for is an element of = 0.32. This tension, as already discussed in the literature, could arise either from systematics in the JWST measurements or from new physics. Here, as a last-ditch effort, we point out that disregarding the large angular scale polarization obtained by Planck, which allows for significantly larger values of the matter clustering parameter sigma(8), could lead to better agreement between Planck and JWST within the.CDM framework. Assuming.CDM and no systematics in the current JWST results, this implies either an unknown systematic error in current large angular scale CMB polarization measurements or an unidentified physical mechanism that could lower the expected amount of CMB polarization produced during the epoch of reionization. Interestingly, the model compatible with Planck temperature-only data and JWST observation also favors a higher Hubble constant H-0 = 69.0 +/- 1.1 km/s/Mpc at 68% C.L., in better agreement with observations based on SN-Ia luminosity distances.
Address (up) [Forconi, Matteo; Ruchika; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001142721200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5903
Permanent link to this record
 

 
Author Fujita, Y.; Rubio, B.; Gelletly, W.
Title Spin-isospin excitations probed by strong, weak and electro-magnetic interactions Type Journal Article
Year 2011 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 66 Issue 3 Pages 549-606
Keywords Gamow-Teller transitions; beta decay; Charge-exchange reactions; Isospin symmetry; High resolution; Proton-rich nuclei
Abstract Gamow-Teller (GT) transitions are the most common weak interaction processes of spin-isospin (sigma tau) type in atomic nuclei. They are of interest not only in nuclear physics but also in astrophysics; they play an important role in supernovae explosions and nucleosynthesis. The direct study of weak decay processes, however, gives relatively limited information about GT transitions and the states excited via GT transitions (GT states); beta decay can only access states at excitation energies lower than the decay Q-value, and neutrino-induced reactions have very small cross-sections. However, one should note that beta decay has a direct access to the absolute GT transition strengths B(GT) from a study of half-lives, Q(beta)-values and branching ratios. They also provide information on GT transitions in nuclei far-from-stability. Studies of M1 gamma transitions provide similar information. In contrast, the complementary charge-exchange (CE) reactions, such as the (p, n) or ((3)He, t) reactions at intermediate beam energies and 0 degrees, can selectively excite GT states up to high excitation energies in the final nucleus. It has been found empirically that there is a close proportionality between the cross-sections at 0 degrees and the transition strengths B(GT) in these CE reactions. Therefore, CE reactions are useful tools to study the relative values of B(GT) strengths up to high excitation energies. In recent ((3)He, t) measurements, one order-of-magnitude improvement in the energy resolution has been achieved. This has made it possible to make one-to-one comparisons of GT transitions studied in CE reactions and beta decays. Thus GT strengths in ((3)He, t) reactions can be normalised by the beta-decay values. In addition, comparisons with closely related M1 transitions studied in gamma decay or electron inelastic scattering [(e, e')1, and furthermore with “spin” M I transitions that can be studied by proton inelastic scattering [(p, p')[ have now been made possible. In these comparisons, the isospin quantum number T and associated symmetry structure in the same mass A nuclei (isobars) play a key role. Isospin symmetry can extend our scope even to the structures of unstable nuclei that are far from reach at present unstable beam factories.
Address (up) [Fujita, Y] Osaka Univ, Dept Phys, Osaka 5600043, Japan, Email: fujita@rcnp.osaka-u.ac.jp
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000292473100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 692
Permanent link to this record