|   | 
Details
   web
Records
Author Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G.
Title Contribution of constituent quark model c(s)over-bar states to the dynamics of the D*s0 (2317) and Ds1(2460) resonances Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 9 Pages 722 - 22pp
Keywords
Abstract The masses of the D*(s0) (2317) and D-s1(2460) resonances lie below the DK and D* K thresholds respectively, which contradicts the predictions of naive quark models and points out to non-negligible effects of the D(*) K loops in the dynamics of the even-parity scalar (J(pi) = 0(+)) and axial-vector (J(pi) = 1(+)) c (s) over bar systems. Recent lattice QCD studies, incorporating the effects of the D(*) K channels, analyzed these spin-parity sectors and correctly described the D*(s0)(2317) – D-s1(2460) mass splitting. Motivated by such works, we study the structure of the D*(s0)(2317) and D-s1(2460) resonances in the framework of an effective field theory consistent with heavy quark spin symmetry, and that incorporates the interplay between D(*) K meson-meson degrees of freedom and bare P-wave c (s) over bar states predicted by constituent quark models. We extend the scheme to finite volumes and fit the strength of the coupling between both types of degrees of freedom to the available lattice levels, which we successfully describe. We finally estimate the size of the D(*) K two-meson components in the D*(s0)(2317) and D-s1(2460) resonances, and we conclude that these states have a predominantly hadronic-molecular structure, and that it should not be tried to accommodate these mesons within c (s) over bar constituent quark model patterns.
Address (up) [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain, Email: albaladejo@um.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000443822000003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3714
Permanent link to this record
 

 
Author Albandea, D.; Del Debbio, L.; Hernandez, P.; Kenway, R.; Marsh Rossney, J.; Ramos, A.
Title Learning trivializing flows Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 7 Pages 676 - 14pp
Keywords
Abstract The recent introduction of machine learning techniques, especially normalizing flows, for the sampling of lattice gauge theories has shed some hope on improving the sampling efficiency of the traditional hybrid Monte Carlo (HMC) algorithm. In this work we study a modified HMC algorithm that draws on the seminal work on trivializing flows by L & uuml;scher. Autocorrelations are reduced by sampling from a simpler action that is related to the original action by an invertible mapping realised through Normalizing Flows models with a minimal set of training parameters. We test the algorithm in a f(4) theory in 2D where we observe reduced autocorrelation times compared with HMC, and demonstrate that the training can be done at small unphysical volumes and used in physical conditions. We also study the scaling of the algorithm towards the continuum limit under various assumptions on the network architecture.
Address (up) [Albandea, D.; Hernandez, P.; Ramos, A.] Edificio Inst Invest, IFIC CSIC UVEG, Apt 22085, Valencia 46071, Spain, Email: david.albandea@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001066712500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5698
Permanent link to this record
 

 
Author Albandea, D.; Hernandez, P.; Ramos, A.; Romero-Lopez, F.
Title Topological sampling through windings Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 10 Pages 873 - 12pp
Keywords
Abstract We propose a modification of the Hybrid Monte Carlo (HMC) algorithm that overcomes the topological freezing of a two-dimensional U(1) gauge theory with and without fermion content. This algorithm includes reversible jumps between topological sectors – winding steps – combined with standard HMC steps. The full algorithm is referred to as winding HMC (wHMC), and it shows an improved behaviour of the autocorrelation time towards the continuum limit. We find excellent agreement between the wHMC estimates of the plaquette and topological susceptibility and the analytical predictions in the U(1) pure gauge theory, which are known even at finite beta. We also study the expectation values in fixed topological sectors using both HMC and wHMC, with and without fermions. Even when topology is frozen in HMC – leading to significant deviations in topological as well as non-topological quantities – the two algorithms agree on the fixed-topology averages. Finally, we briefly compare the wHMC algorithm results to those obtained with master-field simulations of size L similar to 8 x 10(3).
Address (up) [Albandea, David; Hernandez, Pilar; Ramos, Alberto; Romero-Lopez, Fernando] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: David.Albandea@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000703880600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4979
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title A Survey of Active Galaxies at TeV Photon Energies with the HAWC Gamma-Ray Observatory Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 907 Issue 2 Pages 67 - 18pp
Keywords Active galactic nuclei; Blazars; Gamma-rays; Gamma-ray sources; Sky surveys; Radio galaxies
Abstract The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory continuously detects TeV photons and particles within its large field of view, accumulating every day a deeper exposure of two-thirds of the sky. We analyzed 1523 days of HAWC live data acquired over four and a half years, in a follow-up analysis of 138 nearby (z < 0.3) active galactic nuclei from the Third Catalog of Hard Fermi-LAT sources culminating within 40 degrees of the zenith at Sierra Negra, the HAWC site. This search for persistent TeV emission used a maximum-likelihood analysis assuming intrinsic power-law spectra attenuated by pair production of gamma-ray photons with the extragalactic background light. HAWC clearly detects persistent emission from Mkn 421 and Mkn 501, the two brightest blazars in the TeV sky, at 65 sigma and 17 sigma level, respectively. Marginal evidence, just above the 3 sigma level, was found for three other known very high-energy emitters: the radio galaxy M87 and the BL Lac objects VER J0521+211 and 1ES 1215+303, the latter two at z similar to 0.1. We find a 4.2 sigma evidence for collective emission from the set of 30 previously reported very high-energy sources, with Mkn 421 and Mkn 501 excluded. Upper limits are presented for the sample under the power-law assumption and in the predefined (0.5-2.0), (2.0-8.0), and (8.0-32.0) TeV energy intervals.
Address (up) [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA, Email: alberto@inaoep.mx;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000612927500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4712
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Evidence of 200 TeV Photons from HAWC J1825-134 Type Journal Article
Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 907 Issue 2 Pages L30 - 9pp
Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Gamma-ray observatories
Abstract The Earth is bombarded by ultrarelativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10(15) eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV gamma-rays from decaying pi(0), produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cerenkov (HAWC) observatory of the gamma-ray source, HAWC J1825-134, whose energy spectrum extends well beyond 200 TeV without a break or cutoff. The source is found to be coincident with a giant molecular cloud. The ambient gas density is as high as 700 protons cm(-3). While the nature of this extreme accelerator remains unclear, CRs accelerated to energies of several PeV colliding with the ambient gas likely produce the observed radiation.
Address (up) [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: sabrina.casanova@ifj.edu.pl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000612623100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4703
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title 3HWC: The Third HAWC Catalog of Very-high-energy Gamma-Ray Sources Type Journal Article
Year 2020 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 905 Issue 1 Pages 76 - 14pp
Keywords Gamma-ray astronomy; Gamma-ray observatories; High energy astrophysics; Cosmic ray sources
Abstract We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High-Altitude Water Cherenkov (HAWC) Observatory. The catalog represents the most sensitive survey of the northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at >= 5 sigma significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within 1 degrees of previously detected TeV emitters, and 20 sources that are more than 1 degrees away from any previously detected TeV source. Of these 20 new sources, 14 have a potential counterpart in the fourth Fermi Large Area Telescope catalog of gamma-ray sources. We also explore potential associations of 3HWC sources with pulsars in the Australia Telescope National Facility (ATNF) pulsar catalog and supernova remnants in the Galactic supernova remnant catalog.
Address (up) [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.; Sinnis, G.; Ukwatta, T. N.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM USA, Email: hfleisch@mtu.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000599109900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4639
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title HAWC Search for High-mass Microquasars Type Journal Article
Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 912 Issue 1 Pages L4 - 12pp
Keywords
Abstract Microquasars with high-mass companion stars are promising very high energy (VHE; 0.1-100 TeV) gamma-ray emitters, but their behaviors above 10 TeV are poorly known. Using the High Altitude Water Cerenkov (HAWC) observatory, we search for excess gamma-ray emission coincident with the positions of known high-mass microquasars (HMMQs). No significant emission is observed for LS 5039, Cyg X-1, Cyg X-3, and SS 433 with 1523 days of HAWC data. We set the most stringent limit above 10 TeV obtained to date on each individual source. Under the assumption that HMMQs produce gamma rays via a common mechanism, we have performed source-stacking searches, considering two different scenarios: (I) gamma-ray luminosity is a fraction epsilon ( gamma ) of the microquasar jet luminosity, and (II) VHE gamma rays are produced by relativistic electrons upscattering the radiation field of the companion star in a magnetic field B. We obtain epsilon ( gamma ) < 5.4 x 10(-6) for scenario I, which tightly constrains models that suggest observable high-energy neutrino emission by HMMQs. In the case of scenario II, the nondetection of VHE gamma rays yields a strong magnetic field, which challenges synchrotron radiation as the dominant mechanism of the microquasar emission between 10 keV and 10 MeV.
Address (up) [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA, Email: kefang@physics.wisc.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000646368700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4798
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Spectrum and Morphology of the Very-high-energy Source HAWC J2019+368 Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 911 Issue 2 Pages 143 - 11pp
Keywords
Abstract The MGRO J2019+37 region is one of the brightest sources in the sky at TeV energies. It was detected in the second HAWC catalog as 2HWC J2019+367 and here we present a detailed study of this region using data from HAWC. This analysis resolves the region into two sources: HAWC J2019+368 and HAWC J2016+371. We associate HAWC J2016+371 with the evolved supernova remnant CTB 87, although its low significance in this analysis prevents a detailed study at this time. An investigation of the morphology (including possible energy-dependent morphology) and spectrum for HAWC J2019+368 is the focus of this work. We associate HAWC J2019+368 with PSR J2021+3651 and its X-ray pulsar wind nebula, the Dragonfly nebula. Modeling the spectrum measured by HAWC and Suzaku reveals a similar to 7 kyr pulsar and nebula system producing the observed emission at X-ray and gamma-ray energies.
Address (up) [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM USA, Email: chadb@umd.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000687217300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4939
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Probing the Sea of Cosmic Rays by Measuring Gamma-Ray Emission from Passive Giant Molecular Clouds with HAWC Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 914 Issue 2 Pages 106 - 14pp
Keywords
Abstract The study of high-energy gamma rays from passive giant molecular clouds (GMCs) in our Galaxy is an indirect way to characterize and probe the paradigm of the “sea” of cosmic rays in distant parts of the Galaxy. By using data from the High Altitude Water Cerenkov (HAWC) Observatory, we measure the gamma-ray flux above 1 TeV of a set of these clouds to test the paradigm. We selected high galactic latitude clouds that are in HAWC's field of view and that are within 1 kpc distance from the Sun. We find no significant excess emission in the cloud regions, nor when we perform a stacked log-likelihood analysis of GMCs. Using a Bayesian approach, we calculate 95% credible interval upper limits of the gamma-ray flux and estimate limits on the cosmic-ray energy density of these regions. These are the first limits to constrain gamma-ray emission in the multi-TeV energy range (>1 TeV) using passive high galactic latitude GMCs. Assuming that the main gamma-ray production mechanism is due to proton-proton interaction, the upper limits are consistent with a cosmic-ray flux and energy density similar to that measured at Earth.
Address (up) [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: hgayala@psu.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000663912700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4858
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Evidence that Ultra-high-energy Gamma Rays Are a Universal Feature near Powerful Pulsars Type Journal Article
Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 911 Issue 2 Pages L27 - 8pp
Keywords
Abstract The highest-energy known gamma-ray sources are all located within 0.degrees 5 of extremely powerful pulsars. This raises the question of whether ultra-high-energy (UHE; >56 TeV) gamma-ray emission is a universal feature expected near pulsars with a high spin-down power. Using four years of data from the High Altitude Water Cherenkov Gamma-Ray Observatory, we present a joint-likelihood analysis of 10 extremely powerful pulsars to search for subthreshold UHE gamma-ray emission correlated with these locations. We report a significant detection (>3 sigma), indicating that UHE gamma-ray emission is a generic feature of powerful pulsars. We discuss the emission mechanisms of the gamma rays and the implications of this result. The individual environment, such as the magnetic field and particle density in the surrounding area, appears to play a role in the amount of emission.
Address (up) [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: kmalone@lanl.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000642352500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4796
Permanent link to this record