|   | 
Details
   web
Records
Author Anderson, P.R.; Balbinot, R.; Fabbri, A.; Parentani, R.
Title Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 12 Pages 124018 - 18pp
Keywords
Abstract The density-density correlation function is computed for the Bogoliubov pseudoparticles created in a Bose-Einstein condensate undergoing a black hole flow. On the basis of the gravitational analogy, the method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared to the condensate healing length.
Address (up) [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000320609200009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1488
Permanent link to this record
 

 
Author Anderson, P.R.; Balbinot, R.; Fabbri, A.; Parentani, R.
Title Gray-body factor and infrared divergences in 1D BEC acoustic black holes Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 10 Pages 104044 - 6pp
Keywords
Abstract It is shown that the gray-body factor for a one-dimensional elongated Bose-Einstein condensate (BEC) acoustic black hole with one horizon does not vanish in the low-frequency (omega -> 0) limit. This implies that the analog Hawking radiation is dominated by the emission of an infinite number (1/omega) of soft phonons in contrast with the case of a Schwarzschild black hole where the gray-body factor vanishes as omega -> 0 and the spectrum is not dominated by low-energy particles. The infrared behaviors of certain correlation functions are also discussed.
Address (up) [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000348186700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2079
Permanent link to this record
 

 
Author Anderson, P.R.; Fabbri, A.; Balbinot, R.
Title Low frequency gray-body factors and infrared divergences: Rigorous results Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 6 Pages 064061 - 18pp
Keywords
Abstract Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a one-dimensional Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of the symmetric two-point function and two functions derived from it: the point-split stress-energy tensor for the massless minimally coupled scalar field in Schwarzschild-de Sitter spacetime and the density-density correlation function for a Bose-Einstein condensate acoustic black hole.
Address (up) [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000352062800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2172
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Improved exclusion limit for light dark matter from e(+) e(-) annihilation in NA64 Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 9 Pages L091701 - 7pp
Keywords
Abstract The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A' were set by the NA64 experiment for the mass region m(A') less than or similar to 250 MeV, by analyzing data from the interaction of 2.84 x 10(11) 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A' production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e(+) beam efforts.
Address (up) [Andreev, Yu M.; Dermenev, A., V; Gninenko, S. N.; Karneyeu, A. E.; Kirpichnikov, D., V; Kirsanov, M. M.; Kravchuk, L., V; Krasnikov, N., V; Tlisova, I; Toropin, A. N.] Inst Nucl Res, Moscow 117312, Russia, Email: andrea.celentano@ge.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000744291500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5090
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Search for a light Z' in the L-mu – L-tau scenario with the NA64-e experiment at CERN Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 3 Pages 032015 - 12pp
Keywords
Abstract The extension of Standard Model made by inclusion of additional U(1) gauge L-mu – L-tau symmetry can explain the difference between the measured and the predicted value of the muon magnetic moment and solve the tension in B meson decays. This model predicts the existence of a new, light Z' vector boson, predominantly coupled to second and third generation leptons, whose interaction with electrons is due to a loop mechanism involving muons and taus. In this work, we present a rigorous evaluation of the upper limits in the Z' parameter space, obtained from the analysis of the data collected by the NA64-e experiment at CERN SPS, that performed a search for light dark matter with 2.84 x 10(11) electrons impinging with 100 GeV on an active thick target. The resulting limits touch the muon g – 2 preferred band for values of the Z' mass of order of 1 MeV, while the sensitivity projections for the future high-statistics NA64-e runs demonstrate the power of the electrons/positron beam approach in this theoretical scenario.
Address (up) [Andreev, Yu M.; Dermenev, A., V; Gninenko, S. N.; Karneyeu, A. E.; Kirpichnikov, D., V; Kirsanov, M. M.; Kravchuk, L., V; Krasnikov, N., V; Tlisova, I; Toropin, A. N.] Inst Nucl Res, Moscow 117312, Russia, Email: luca.marsicano@ge.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000862798400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5376
Permanent link to this record