toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caron, S.; Ruiz de Austri, R.; Zhang, Z.Y. url  doi
openurl 
  Title Mixture-of-Theories training: can we find new physics and anomalies better by mixing physical theories? Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 004 - 37pp  
  Keywords Specific BSM Phenomenology; Supersymmetry  
  Abstract Model-independent search strategies have been increasingly proposed in recent years because on the one hand there has been no clear signal for new physics and on the other hand there is a lack of a highly probable and parameter-free extension of the standard model. For these reasons, there is no simple search target so far. In this work, we try to take a new direction and ask the question: bearing in mind that we have a large number of new physics theories that go beyond the Standard Model and may contain a grain of truth, can we improve our search strategy for unknown signals by using them “in combination”? In particular, we show that a signal hypothesis based on a large, intermingled set of many different theoretical signal models can be a superior approach to find an unknown BSM signal. Applied to a recent data challenge, we show that “mixture-of-theories training” outperforms strategies that optimize signal regions with a single BSM model as well as most unsupervised strategies. Applications of this work include anomaly detection and the definition of signal regions in the search for signals of new physics.  
  Address (up) [Caron, Sascha; Zhang, Zhongyi] Radboud Univ Nijmegen, High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000943095100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5494  
Permanent link to this record
 

 
Author Fernandez Casani, A.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Salt, J.; Sanchez, J.; Villaplana Perez, M. doi  openurl
  Title Big Data Analytics for the ATLAS EventIndex Project with Apache Spark Type Journal Article
  Year 2023 Publication Computational and Mathematical Methods Abbreviated Journal Comput. Math. Methods  
  Volume 2023 Issue Pages 6900908 - 19pp  
  Keywords  
  Abstract The ATLAS EventIndex was designed to provide a global event catalogue and limited event-level metadata for ATLAS experiment of the Large Hadron Collider (LHC) and their analysis groups and users during Run 2 (2015-2018) and has been running in production since. The LHC Run 3, started in 2022, has seen increased data-taking and simulation production rates, with which the current infrastructure would still cope but may be stretched to its limits by the end of Run 3. A new core storage service is being developed in HBase/Phoenix, and there is work in progress to provide at least the same functionality as the current one for increased data ingestion and search rates and with increasing volumes of stored data. In addition, new tools are being developed for solving the needed access cases within the new storage. This paper describes a new tool using Spark and implemented in Scala for accessing the big data quantities of the EventIndex project stored in HBase/Phoenix. With this tool, we can offer data discovery capabilities at different granularities, providing Spark Dataframes that can be used or refined within the same framework. Data analytic cases of the EventIndex project are implemented, like the search for duplicates of events from the same or different datasets. An algorithm and implementation for the calculation of overlap matrices of events across different datasets are presented. Our approach can be used by other higher-level tools and users, to ease access to the data in a performant and standard way using Spark abstractions. The provided tools decouple data access from the actual data schema, which makes it convenient to hide complexity and possible changes on the backed storage.  
  Address (up) [Casani, Alvaro Fernandez; Montoro, Carlos Garcia; de la Hoz, Santiago Gonzalez; Salt, Jose; Sanchez, Javier; Perez, Miguel Villaplana] CSIC UV, Inst Corpuscular Phys IFIC, E-46980 Paterna, Spain, Email: alvaro.fernandez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Wiley-Hindawi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001079548500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5706  
Permanent link to this record
 

 
Author Catani, S.; Cieri, L.; Colferai, D.; Coradeschi, F. url  doi
openurl 
  Title Soft gluon-quark-antiquark emission in QCD hard scattering Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 1 Pages 38 - 18pp  
  Keywords  
  Abstract We consider the radiation of a soft gluon (g) and a soft quark-antiquark (qq & macr;) pair in QCD hard scattering. In the soft limit the scattering amplitude has a singular behaviour that is factorized and controlled by a soft current, which has a process-independent structure in colour space. We evaluate the soft gqq & macr; current at the tree level for an arbitrary multiparton scattering process. The irreducible correlation component of the current includes strictly nonabelian terms and also terms with an abelian character. Analogous abelian correlations appear for soft photon-lepton- antilepton emission in QED. The squared current for soft gqq & macr; emission produces colour dipole and colourtripole interactions between the hard-scattering partons. The colour tripole interactions are odd under charge conjugation and lead to charge asymmetry effects. We consider the specific applications to processes with two and three hard partons, and we discuss the structure of the corresponding charge asymmetry contributions. We also generalize our QCD results to the cases of QED and mixed QCD x QED radiative corrections.  
  Address (up) [Catani, Stefano; Colferai, Dimitri] Univ Firenze, Sez Firenze, INFN, I-50019 Sesto Fiorentino, Italy, Email: colferai@fi.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000917520400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5460  
Permanent link to this record
 

 
Author Cepedello, R.; Escribano, P.; Vicente, A. url  doi
openurl 
  Title Neutrino masses, flavor anomalies, and muon g-2 from dark loops Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 3 Pages 035034 - 6pp  
  Keywords  
  Abstract The lepton sector of the Standard Model is at present haunted by several intriguing anomalies, including an emerging pattern of deviations in b ? sll processes, with hints of lepton flavor universality violation, and a discrepancy in the muon anomalous magnetic moment. More importantly, it cannot explain neutrino oscillation data, which necessarily imply the existence of nonzero neutrino masses and lepton mixings. We propose a model that accommodates all the aforementioned anomalies, induces neutrino masses and provides a testable dark matter candidate. This is achieved by introducing a dark sector contributing to the observables of interest at the 1-loop level. Our setup provides a very economical explanation to all these open questions in particle physics and is compatible with the current experimental constraints.  
  Address (up) [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001004183600012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5558  
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 081 - 47pp  
  Keywords SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology  
  Abstract We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.  
  Address (up) [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067194100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5688  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva