|   | 
Details
   web
Records
Author Sobczyk, J.E.; Rocco, N.; Nieves, J.
Title Polarization of tau in quasielastic (anti)neutrino scattering: The role of spectral functions Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 100 Issue 3 Pages 035501 - 14pp
Keywords
Abstract We present a study of the tau polarization in charged-current quasielastic (anti)neutrino-nucleus scattering. The spectral function formalism is used to compute the differential cross section and the polarization components for several kinematical setups, relevant for neutrino-oscillation experiments. The effects of the nuclear corrections in these observables are investigated by comparing the results obtained using two different realistic spectral functions, with those deduced from the relativistic global Fermi gas model, where only statistical correlations are accounted for. We show that the spectral functions, although they play an important role when predicting the differential cross sections, produce much less visible effects on the polarization components of the outgoing tau.
Address (down) [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Apartado 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000483582500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4126
Permanent link to this record
 

 
Author Sobczyk, J.E.; Rocco, N.; Lovato, A.; Nieves, J.
Title Weak production of strange and charmed ground-state baryons in nuclei Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 6 Pages 065503 - 16pp
Keywords
Abstract We present results for the quasielastic weak production of Delta and Sigma hyperons induced by (nu) over bar. scattering off nuclei in the kinematical region of interest for accelerator neutrino experiments. We employ realistic hole spectral functions and we describe the propagation of the hyperons in the nuclear medium by means of a Monte Carlo cascade. The latter strongly modifies the kinematics and the relative production rates of the hyperons, leading to a nonvanishing Sigma(+) cross section, to a sizable enhancement of the Lambda production and to a drastic reduction of the Sigma(0) and Sigma(-) distributions. We also compute the quasielastic weak Lambda(c) production cross section, paying special attention to estimate the uncertainties induced by the model dependence of the vacuum n -> Lambda(c) weak matrix element. In this regard, the recent BESIII measurements of the branching ratios of Lambda(c) -> Lambda l(+)nu(l) (l = e, mu) are used to benchmark the available theoretical predictions.
Address (down) [Sobczyk, J. E.; Nieves, And J.] Univ Valencia, Inst Invest Patema, CSIC, Inst Fis Corpuscular IFIC,Ctr Mixto, Apartado 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000471984800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4059
Permanent link to this record
 

 
Author Smith, W.A.; Glazier, D.I.; Mathieu, V.; Albaladejo, M.; Albrecht, M.; Baldwin, Z.; Fernandez-Ramirez, C.; Hammoud, N.; Mikhasenko, M.; Montaña, G.; Perry, R.J.; Pilloni, A.; Shastry, V.; Szczepaniak, A.P.; Winney, D.
Title Ambiguities in partial wave analysis of two spinless meson photoproduction Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 7 Pages 076001 - 12pp
Keywords
Abstract We describe the formalism to analyze the mathematical ambiguities arising in partial-wave analysis of two spinless mesons produced with a linearly polarized photon beam. We show that partial waves are uniquely defined when all accessible observables are considered, for a wave set which includes S and D waves. The inclusion of higher partial waves does not affect our results, and we conclude that there are no mathematical ambiguities in partial-wave analysis of two mesons produced with a linearly polarized photon beam. We present Monte Carlo simulations to illustrate our results.
Address (down) [Smith, W. A.; Shastry, V.; Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA, Email: smithwya@iu.edu
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001092811700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5781
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J.
Title Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 46 Issue 4 Pages 045001 - 155pp
Keywords particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics
Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.
Address (down) [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000460153900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3930
Permanent link to this record
 

 
Author Simpson, F.; Jimenez, R.; Pena-Garay, C.; Verde, L.
Title Dark energy from the motions of neutrinos Type Journal Article
Year 2018 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 20 Issue Pages 72-77
Keywords Neutrinos; Dark energy; Interactions in the dark sector
Abstract Ordinarily, a scalar field may only play the role of dark energy if it possesses a potential that is either extraordinarily flat or extremely fine-tuned. Here we demonstrate that these restrictions are lifted when the scalar field undergoes persistent energy exchange with another fluid. In this scenario, the field is prevented from reversing its direction of motion, and instead may come to rest while displaced from the local minimum of its potential. Therefore almost any scalar potential is capable of initiating a prolonged phase of cosmic acceleration. If the rate of energy transfer is modulated via a derivative coupling, the field undergoes a rapid process of freezing, after which the field's equation of state mimicks that of a cosmological constant. We present a physically motivated realisation in the form of a neutrino-majoron coupling, which avoids the dynamical instabilities associated with mass-varying neutrino models. Finally we discuss possible means by which this model could be experimentally verified.
Address (down) [Simpson, Fergus; Jimenez, Raul; Verde, Licia] Univ Barcelona, UB IEEC, ICC, Marti i Franques 1, E-08028 Barcelona 08028, Spain, Email: feigus2@icc.ub.edu;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000433904300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3599
Permanent link to this record