|   | 
Details
   web
Records
Author Alvarado, C.; Bonilla, C.; Leite, J.; Valle, J.W.F.
Title Phenomenology of fermion dark matter as neutrino mass mediator with gauged B-L Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 817 Issue Pages 136292 - 12pp
Keywords
Abstract We analyze a model with unbroken U(1)(B-L) gauge symmetry where neutrino masses are generated at one loop, after spontaneous breaking of a global U(1)(G) symmetry. These symmetries ensure dark matter (DM) stability and the Diracness of neutrinos. Within this context, we examine fermionic dark matter. Consistency between the required neutrino mass and the observed relic abundance indicates dark matter masses and couplings within the reach of direct detection experiments.
Address (down) [Alvarado, Carlos] Tsinghua Univ, Ctr High Energy Phys, Beijing 100084, Peoples R China, Email: arcarlos00@gmail.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000657652200059 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4866
Permanent link to this record
 

 
Author Aguilar-Saavedra, J.A.; Deppisch, F.; Kittel, O.; Valle, J.W.F.
Title Flavor in heavy neutrino searches at the LHC Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 9 Pages 091301 - 4pp
Keywords
Abstract Heavy neutrinos at the TeV scale have been searched for at the LHC in the context of left-right models, under the assumption that they couple to the electron, the muon, or both. We show that current searches are also sensitive to heavy neutrinos coupling predominantly to the tau lepton, and present limits can significantly constrain the parameter space of general flavor mixing.
Address (down) [Aguilar-Saavedra, J. A.; Kittel, O.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain, Email: jaas@ugr.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000304400400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1045
Permanent link to this record
 

 
Author Addazi, A.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title String completion of an SU(3)(c) x SU(3)(L) x U(1)(X) electroweak model Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 759 Issue Pages 471-478
Keywords Unification; Branes; String phenomenology; Neutrino mass; Neutron-antineutron oscillations
Abstract The extended electroweak SU(3)(c) circle times SU(3)(L) circle times U(1)(X) symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Address (down) [Addazi, Andrea] Univ Aquila, Dipartimento Fis, I-67010 Coppito, AQ, Italy, Email: andrea.addazi@infn.lngs.it;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000380409200063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2884
Permanent link to this record
 

 
Author Addazi, A.; Ricciardi, G.; Scarlatella, S.; Srivastava, R.; Valle, J.W.F.
Title Interpreting B anomalies within an extended 331 gauge theory Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 3 Pages 035030 - 14pp
Keywords
Abstract In light of the recent R-K(*) data on neutral current flavor anomalies in B -> K-(*())l(+)l(-) decays, we reexamine their quantitative interpretation in terms of an extended 331 gauge theory framework. We achieve this by adding two extra lepton species with novel 331 charges, while ensuring that the model remains anomaly-free. In contrast to the canonical 331 models, the gauge charges of the first and second lepton families differ from each other, allowing lepton-flavor universality violation. We further expand the model by adding the neutral fermions required to provide an adequate description for small neutrino masses.
Address (down) [Addazi, Andrea] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: Addazi@scu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000872136400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5393
Permanent link to this record
 

 
Author Addazi, A.; Marciano, A.; Morais, A.P.; Pasechnik, R.; Srivastava, R.; Valle, J.W.F.
Title Gravitational footprints of massive neutrinos and lepton number breaking Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 807 Issue Pages 135577 - 8pp
Keywords
Abstract We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both “high-scale” as well as “low-scale” variants, with either explicit or spontaneously broken lepton number symmetry U(1)(L), in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken U(1)(L), and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detestability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken U(1)(L), at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.
Address (down) [Addazi, Andrea; Marciano, Antonino] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China, Email: andrea.addazi@lngs.infn.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000571765700055 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4543
Permanent link to this record