|   | 
Details
   web
Records
Author Bottoni, S.; Benzoni, G.; Leoni, S.; Montanari, D.; Bracco, A.; Vigezzi, E.; Azaiez, F.; Corradi, L.; Bazzacco, D.; Farnea, E.; Gadea, A.; Szilner, S.; Pollarolo, G.
Title Reaction dynamics and gamma spectroscopy of Ne isotoopes by the heavy ion reaction Ne-22+Pb-208 Type Journal Article
Year 2013 Publication Acta Physica Polonica B Abbreviated Journal Acta Phys. Pol. B
Volume 44 Issue 3 Pages 457-461
Keywords
Abstract The heavy ion reaction Ne-22+Pb-208 at 128 MeV beam energy has been studied using the PRISMA-CLARA experimental setup at Legnaro National Laboratories. Aim of the experiment is the measurement of elastic, inelastic and one nucleon transfer cross sections. The data are presented in parallel with similar results for the unstable Ne-24 nucleus, using existing data from the reaction Ne-24+Pb-208 at 182 MeV (measured at SPIRAL with the VAMOS-EXOGAM setup). A comparison with angular distributions obtained by semiclassical and DWBA predictions for the quadrupole deformation parameter is also discussed. In particular, the DWBA analysis allowed to determine the beta(C)(2) charge deformation parameter both in Ne-22 and Ne-24.
Address (up) Univ Milan, Milan, Italy
Corporate Author Thesis
Publisher Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4254 ISBN Medium
Area Expedition Conference
Notes WOS:000317703400030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1404
Permanent link to this record
 

 
Author Roca, L.; Oset, E.
Title Lambda(1405) poles obtained from pi(0)Sigma(0) photoproduction data Type Journal Article
Year 2013 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 87 Issue 5 Pages 055201 - 8pp
Keywords
Abstract We present a strategy to extract the position of the two Lambda(1405) poles from experimental photoproduction data measured recently at different energies in the gamma p -> K+pi(0)Sigma(0) reaction at Jefferson Laboratory. By means of a chiral dynamics motivated potential with free parameters, we solve the Bethe-Salpeter equation in the coupled channels (K) over barN and pi Sigma in isospin I = 0 and parametrize the amplitude for the photonuclear reaction in terms of a linear combination of the pi Sigma -> pi Sigma and (K) over barN -> pi Sigma scattering amplitudes in I = 0, with a different linear combination for each energy. Good fits to the data are obtained with some sets of parameters, by means of which one can also predict the cross section for the K- p -> pi(0)Sigma(0) reaction. These later results help us decide among the possible solutions. The result is that the different solutions lead to two poles similar to those found in the chiral unitary approach. With the best result we find the two Lambda(1405) poles at 1385 – 68i MeV and 1419 – 22i MeV.
Address (up) Univ Murcia, Dept Fis, E-30100 Murcia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000318527400004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1442
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Cosmology of hybrid metric-Palatini f(X)-gravity Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 011 - 25pp
Keywords modified gravity; dark energy theory
Abstract A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X equivalent to kappa T-2 + R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure.
Address (up) Univ Naples Federico II, Dipartimento Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000318556200011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1444
Permanent link to this record
 

 
Author Volpe, C.; Vaananen, D.; Espinoza, C.
Title Extended evolution equations for neutrino propagation in astrophysical and cosmological environments Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 11 Pages 113010 - 17pp
Keywords
Abstract We derive the evolution equations for a system of neutrinos interacting among themselves and with a matter background, based upon the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. This theoretical framework gives an (unclosed) set of first-order coupled integro-differential equations governing the evolution of the reduced density matrices. By employing the hierarchy, we first rederive the mean-field evolution equations for the neutrino one-body density matrix associated with a system of neutrinos and antineutrinos interacting with matter and with an anisotropic neutrino background. Then, we derive extended evolution equations to determine neutrino flavor conversion beyond the commonly used mean-field approximation. To this aim we include neutrino-antineutrino pairing correlations to the two-body density matrix. The inclusion of these new contributions leads to an extended evolution equation for the normal neutrino density and to an equation for the abnormal one involving the pairing mean field. We discuss the possible impact of neutrino-antineutrino correlations on neutrino flavor conversion in the astrophysical and cosmological environments, and possibly upon the supernova dynamics. Our results can be easily generalized to an arbitrary number of neutrino families.
Address (up) Univ Paris 07, AstroParticule & Cosmol APC, CNRS, F-75205 Paris 13, France, Email: volpe@apc.univ-paris7.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000320951500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1478
Permanent link to this record
 

 
Author Robert, C.; Dedes, G.; Battistoni, G.; Bohlen, T.T.; Buvat, I.; Cerutti, F.; Chin, M.P.W.; Ferrari, A.; Gueth, P.; Kurz, C.; Lestand, L.; Mairani, A.; Montarou, G.; Nicolini, R.; Ortega, P.G.; Parodi, K.; Prezado, Y.; Sala, P.R.; Sarrut, D.; Testa, E.
Title Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes Type Journal Article
Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 58 Issue 9 Pages 2879-2899
Keywords
Abstract Monte Carlo simulations play a crucial role for in-vivo treatment monitoring based on PET and prompt gamma imaging in proton and carbon-ion therapies. The accuracy of the nuclear fragmentation models implemented in these codes might affect the quality of the treatment verification. In this paper, we investigate the nuclear models implemented in GATE/Geant4 and FLUKA by comparing the angular and energy distributions of secondary particles exiting a homogeneous target of PMMA. Comparison results were restricted to fragmentation of O-16 and C-12. Despite the very simple target and set-up, substantial discrepancies were observed between the two codes. For instance, the number of high energy (>1 MeV) prompt gammas exiting the target was about twice as large with GATE/Geant4 than with FLUKA both for proton and carbon ion beams. Such differences were not observed for the predicted annihilation photon production yields, for which ratios of 1.09 and 1.20 were obtained between GATE and FLUKA for the proton beam and the carbon ion beam, respectively. For neutrons and protons, discrepancies from 14% (exiting protons-carbon ion beam) to 57% (exiting neutrons-proton beam) have been identified in production yields as well as in the energy spectra for neutrons.
Address (up) Univ Paris 07, IMNC, CNRS, UMR 8165, F-91406 Orsay, France, Email: robert@imnc.in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000317579900010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1407
Permanent link to this record