|   | 
Details
   web
Records
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.; Monrabal, F.; Rodriguez, J.; Toledo, J.F.
Title Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages P09011 - 18pp
Keywords Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Noble liquid detectors (scintillation ionization, double-phase); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.
Address (up) [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, P.; Rodriguez, J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387862300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2866
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P.
Title Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 694 Issue Pages 211-223
Keywords Neutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiber
Abstract Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision. (C) 2012 Elsevier B.V. All rights reserved.
Address (up) [Gomi, S.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Kawamuko, H.; Kikawa, T.; Kubo, H.; Kubota, J.; Kurimoto, Y.; Litchfield, R. P.; Matsuoka, K.; Minamino, A.; Murakami, A.; Nagai, N.; Nakaya, T.; Nitta, K.; Nobuhara, T.; Otani, M.; Suzuki, K.; Taguchi, M.; Takahashi, S.; Yamauchi, T.] Kyoto Univ, Dept Phys, Kyoto 606, Japan, Email: masashi.o@scphys.kyoto-u.ac.jp
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311020500031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1239
Permanent link to this record
 

 
Author Gonzalez-Sevilla, S. et al; Bernabeu Verdu, J.; Civera, J.V.; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Santoyo, D.; Soldevila, U.
Title A double-sided silicon micro-strip Super-Module for the ATLAS Inner Detector upgrade in the High-Luminosity LHC Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P02003 - 37pp
Keywords Particle tracking detectors; Si microstrip and pad detectors; Performance of High Energy Physics Detectors
Abstract The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 x 10(34) cm(-2) s(-1). For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail.
Address (up) [Gonzalez-Sevilla, S.; Barbier, G.; Cadoux, F.; Clark, A.; Favre, Y.; Ferrere, D.; Iacobucci, G.; La Marra, D.; Weber, M.] DPNC Univ Geneva, Geneva, Switzerland, Email: rgio.Gonzalez.Sevilla@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000332314400038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1749
Permanent link to this record
 

 
Author Grkovski, M.; Brzezinski, K.; Cindro, V.; Clinthorne, N.H.; Kagan, H.; Lacasta, C.; Mikuz, M.; Solaz, C.; Studen, A.; Weilhammer, P.; Zontar, D.
Title Evaluation of a high resolution silicon PET insert module Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 788 Issue Pages 86-94
Keywords Positron emission tomography; Silicon detectors; PET insert; Image reconstruction
Abstract Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm(2) pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (20) geometry with a Jaszczak phantom (rod diameters of 12-4.8 mm) Filled with F-18-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).
Address (up) [Grkovski, Milan; Cindro, Vladimir; Mikuz, Marko; Studen, Andrej; Zontar, Dejan] Jozef Stefan Inst, Ljubljana, Slovenia, Email: milan.grkovski@ijs.si
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000354870700016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2232
Permanent link to this record
 

 
Author Guadilla, V.; Algora, A.; Estienne, M.; Fallot, M.; Gelletly, W.; Porta, A.; Rigalleau, L.M.; Stutzmann, J.S.
Title First measurements with a new fl-electron detector for spectral shape studies Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02027 - 21pp
Keywords Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Instrumentation for radioactive beams (fragmentation devices; fragment and isotope; separators incl. ISOL; isobar separators; ion and atom traps; weak-beam diagnostics; radioactive-beam ion sources); Hybrid detectors; Spectrometers
Abstract The shape of the electron spectrum emitted in /3 decay carries a wealth of information about nuclear structure and fundamental physics. In spite of that, few dedicated measurements have been made of /3 -spectrum shapes. In this work we present a newly developed detector for /3 electrons based on a telescope concept. A thick plastic scintillator is employed in coincidence with a thin silicon detector. The first measurements employing this detector have been carried out with mono -energetic electrons from the high-energy resolution electron -beam spectrometer at Bordeaux. Here we report on the good reproduction of the experimental spectra of mono -energetic electrons using Monte Carlo simulations. This is a crucial step for future experiments, where a detailed Monte Carlo characterization of the detector is needed to determine the shape of the /3 -electron spectra by deconvolution of the measured spectra with the response function of the detector. A chamber to contain two telescope assemblies has been designed for future /3 -decay experiments at the Ion Guide Isotope Separator On -Line facility in Jyvaskyla, aimed at improving our understanding of reactor antineutrino spectra.
Address (up) [Guadilla, V.; Estienne, M.; Fallot, M.; Porta, A.; Rigalleau, L. -m.; Stutzmann, J. -s.] Univ Nantes, Subatech, IMT Atlantique, CNRS,IN2P3, F-44307 Nantes, France, Email: vguadilla@fuw.edu.pl
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001181748300007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6064
Permanent link to this record