toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zornoza, J.D. doi  openurl
  Title Review on Indirect Dark Matter Searches with Neutrino Telescopes Type Journal Article
  Year 2021 Publication Universe Abbreviated Journal Universe  
  Volume 7 Issue 11 Pages 415 - 10pp  
  Keywords dark matter; neutrino telescopes; IceCube; ANTARES; KM3NeT; SuperK  
  Abstract The search for dark matter is one of the hottest topics in Physics today. The fact that about 80% of the matter of the Universe is of unknown nature has triggered an intense experimental activity to detect this kind of matter and a no less intense effort on the theory side to explain it. Given the fact that we do not know the properties of dark matter well, searches from different fronts are mandatory. Neutrino telescopes are part of this experimental quest and offer specific advantages. Among the targets to look for dark matter, the Sun and the Galactic Center are the most promising ones. Considering models of dark matter densities in the Sun, neutrino telescopes have put the best limits on spin-dependent cross section of proton-WIMP scattering. Moreover, they are competitive in the constraints on the thermally averaged annihilation cross-section for high WIMP masses when looking at the Galactic Centre. Other results are also reviewed.  
  Address (up) [de Dios Zornoza, Juan] IFIC Inst Fis Corpuscular UV CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: zornoza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000723346500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5044  
Permanent link to this record
 

 
Author de Gouvea, A.; De Romeri, V.; Ternes, C.A. url  doi
openurl 
  Title Combined analysis of neutrino decoherence at reactor experiments Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 042 - 12pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We combine data from the short-baseline experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) and from the long baseline reactor experiment KamLAND to obtain the best current limit on the reactor antineutrino wave-packet width, sigma > 2.1 x 10(-4) nm at 90% CL. We also find that the determination of standard oscillation parameters is robust, i.e., it is mostly insensitive to the presence of hypothetical decoherence effects once one combines the results of the different reactor neutrino experiments.  
  Address (up) [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA, Email: degouvea@northwestern.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762304800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5150  
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.D.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Plenter, J.; Prisco, R.M.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tramontano, F. url  doi
openurl 
  Title A Stroll through the Loop-Tree Duality Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 6 Pages 1029 - 37pp  
  Keywords Feynman integrals; multi-loop calculations; perturbative QFT; higher orders  
  Abstract The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.  
  Address (up) [de Jesus Aguilera-Verdugo, Jose; Driencourt-Mangin, Felix; Plenter, Judith; Selomit Ramirez-Uribe, Norma; Ernesto Renteria-Olivo, Andres; Rodrigo, German; Sborlini, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Paterna, Spain, Email: jesus.aguilera@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000666742200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4889  
Permanent link to this record
 

 
Author De Romeri, V.; Martinez-Mirave, P.; Tortola, M. url  doi
openurl 
  Title Signatures of primordial black hole dark matter at DUNE and THEIA Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 051 - 21pp  
  Keywords dark matter theory; neutrino experiments; primordial black holes  
  Abstract Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)-10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.  
  Address (up) [De Romeri, Valentina] Univ Valencia, Dept Fis Teor, Paterna 46980, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000758221400007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5140  
Permanent link to this record
 

 
Author de Salas, P.F.; Forero, D.V.; Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title 2020 global reassessment of the neutrino oscillation picture Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 071 - 36pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, besides the data considered previously, we give updated analyses of IceCube DeepCore and Sudbury Neutrino Observatory data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NO nu A measurements, as reported in the Neutrino 2020 conference. All in all, these new analyses result in more accurate measurements of theta (13), theta (12), Delta m212 and Delta m312. The best fit value for the atmospheric angle theta (23) lies in the second octant, but first octant solutions remain allowed at similar to 2.4 sigma. Regarding CP violation measurements, the preferred value of delta we obtain is 1.08 pi (1.58 pi) for normal (inverted) neutrino mass ordering. The global analysis still prefers normal neutrino mass ordering with 2.5 sigma statistical significance. This preference is milder than the one found in previous global analyses. These new results should be regarded as robust due to the agreement found between our Bayesian and frequentist approaches. Taking into account only oscillation data, there is a weak/moderate preference for the normal neutrino mass ordering of 2.00 sigma. While adding neutrinoless double beta decay from the latest Gerda, CUORE and KamLAND-Zen results barely modifies this picture, cosmological measurements raise the preference to 2.68 sigma within a conservative approach. A more aggressive data set combination of cosmological observations leads to a similar preference for normal with respect to inverted mass ordering, namely 2.70 sigma. This very same cosmological data set provides 2 sigma upper limits on the total neutrino mass corresponding to Sigma m(nu)< 0.12 (0.15) eV in the normal (inverted) neutrino mass ordering scenario. The bounds on the neutrino mixing parameters and masses presented in this up-to-date global fit analysis include all currently available neutrino physics inputs.  
  Address (up) [de Salas, P. F.] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000618343000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4727  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva