toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barenboim, G.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title New physics vs new paradigms: distinguishing CPT violation from NSI Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 5 Pages 390 - 7pp  
  Keywords  
  Abstract Our way of describing Nature is based on local relativistic quantum field theories, and then CPT symmetry, a natural consequence of Lorentz invariance, locality and hermiticity of the Hamiltonian, is one of the few if not the only prediction that all of them share. Therefore, testing CPT invariance does not test a particular model but the whole paradigm. Current and future long baseline experiments will assess the status of CPT in the neutrino sector at an unprecedented level and thus its distinction from similar experimental signatures arising from non-standard interactions is imperative. Whether the whole paradigm is at stake or just the standard model of neutrinos crucially depends on that.  
  Address (up) [Barenboim, G.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467183800003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4005  
Permanent link to this record
 

 
Author Barenboim, G.; Hirn, J.; Sanz, V. url  doi
openurl 
  Title Symmetry meets AI Type Journal Article
  Year 2021 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 11 Issue 1 Pages 014 - 11pp  
  Keywords  
  Abstract We explore whether Neural Networks (NNs) can discover the presence of symmetries as they learn to perform a task. For this, we train hundreds of NNs on a decoy task based on well-controlled Physics templates, where no information on symmetry is provided. We use the output from the last hidden layer of all these NNs, projected to fewer dimensions, as the input for a symmetry classification task, and show that information on symmetry had indeed been identified by the original NN without guidance. As an interdisciplinary application of this procedure, we identify the presence and level of symmetry in artistic paintings from different styles such as those of Picasso, Pollock and Van Gogh.  
  Address (up) [Barenboim, Gabriela; Hirn, Johannes; Sanz, Veronica] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000680039500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4920  
Permanent link to this record
 

 
Author Barenboim, G.; Chun, E.J.; Jung, S.H.; Park, W.I. url  doi
openurl 
  Title Implications of an axino LSP for naturalness Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 3 Pages 035020 - 12pp  
  Keywords  
  Abstract Both the naturalness of the electroweak symmetry breaking and the resolution of the strong CP problem may require a small Higgsino mass μgenerated by a realization of the DFSZ axion model. Assuming the axino is the lightest supersymmetric particle, we study its implications on μand the axion scale. Copiously produced light Higgsinos at collider (effectively only neutral next-to-lightest superparticles pairs) eventually decay to axinos leaving prompt multileptons or displaced vertices which are being looked for at the LHC. We use latest LHC7 + 8 results to derive current limits on μand the axion scale. Various Higgsino-axino phenomenology is illustrated by comparing with a standard case without lightest axinos as well as with a more general case with additional light gauginos in the spectrum.  
  Address (up) [Barenboim, Gabriela; Il Park, Wan] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355488100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2264  
Permanent link to this record
 

 
Author Barenboim, G.; Chen, J.Z.; Hannestad, S.; Oldengott, I.M.; Tram, T.; Wong, Y.Y.Y. url  doi
openurl 
  Title Invisible neutrino decay in precision cosmology Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 087 - 53pp  
  Keywords cosmological neutrinos; neutrino properties; CMBR theory; cosmological parameters from CMBR  
  Abstract We revisit the topic of invisible neutrino decay in the precision cosmological context, via a first-principles approach to understanding the cosmic microwave background and large-scale structure phenomenology of such a non-standard physics scenario. Assuming an effective Lagrangian in which a heavier standard-model neutrino nu(H) couples to a lighter one nu(l) and a massless scalar particle phi via a Yukawa interaction, we derive from first principles the complete set of Boltzmann equations, at both the spatially homogeneous and the firstorder inhomogeneous levels, for the phase space densities of nu(H), nu(l), and phi in the presence of the relevant decay and inverse decay processes. With this set of equations in hand, we perform a critical survey of recent works on cosmological invisible neutrino decay in both limits of decay while nu(H) is ultra-relativistic and non-relativistic. Our two main findings are: (i) in the non-relativistic limit, the effective equations of motion used to describe perturbations in the neutrino-scalar system in the existing literature formally violate momentum conservation and gauge invariance, and (ii) in the ultra-relativistic limit, exponential damping of the anisotropic stress does not occur at the commonly-used rate Gamma(T) = (1/tau(0))( m(nu H)/E-nu H)(3), but at a rate similar to (1/ tau(0))(m(nu H)/E-nu H)(5). Both results are model-independent. The impact of the former finding on the cosmology of invisible neutrino decay is likely small. The latter, however, implies a significant revision of the cosmological limit on the neutrino lifetime tau(0) from tau(old)(0) greater than or similar to 1.2 x 10(9) s (m(nu H)/50 meV)(3) to tau(0) greater than or similar to (4 x 10(5) -> 4 x 10(6)) s (m(nu H)/50 meV)(5).  
  Address (up) [Barenboim, Gabriela; Oldengott, Isabel M.] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636717400082 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4782  
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I. url  doi
openurl 
  Title Spiral inflation Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 741 Issue Pages 252-255  
  Keywords  
  Abstract We propose a novel scenario of primordial inflation in which the inflaton goes through a spiral motion starting from around the top of a symmetry breaking potential. We show that, even though inflation takes place for a field value much smaller than Planck scale, it is possible to obtain relatively large tensor-to-scalar ratio (r similar to 0.1) without fine tuning. The inflationary observables perfectly match Planck data.  
  Address (up) [Barenboim, Gabriela; Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348290800039 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2109  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva