|   | 
Details
   web
Records
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J.
Title Boson stars in Palatini f(R) gravity Type Journal Article
Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 38 Issue 19 Pages 194003 - 25pp
Keywords boson stars; Palatini formalism; modified gravity
Abstract We explore equilibrium solutions of spherically symmetric boson stars in the Palatini formulation of f (R) gravity. We account for the modifications introduced in the gravitational sector by using a recently established correspondence between modified gravity with scalar matter and general relativity with modified scalar matter. We focus on the quadratic theory f (R) = R + xi R-2 and compare its solutions with those found in general relativity, exploring both positive and negative values of the coupling parameter xi. As matter source, a complex, massive scalar field with and without self-interaction terms is considered. Our results show that the existence curves of boson stars in Palatini f (R) gravity are fairly similar to those found in general relativity. Major differences are observed for negative values of the coupling parameter which results in a repulsive gravitational component for high enough scalar field density distributions. Adding self-interactions makes the degeneracy between f (R) and general relativity even more pronounced, leaving very little room for observational discrimination between the two theories.
Address (up) [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, Valencia 46100, Spain, Email: andreu.maso@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000695280300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4964
Permanent link to this record
 

 
Author Navarro-Salas, J.
Title Black holes, conformal symmetry, and fundamental fields Type Journal Article
Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 41 Issue 8 Pages 085003 - 14pp
Keywords black holes; horizons; singularities; conformal symmetry; quantum fields; Standard Model
Abstract Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.
Address (up) [Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001187435100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6029
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Impact of curvature divergences on physical observers in a wormhole space-time with horizons Type Journal Article
Year 2016 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 33 Issue 11 Pages 115007 - 12pp
Keywords Singularities; black holes; metric-affine geometry
Abstract The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
Address (up) [Olmo, Gonzalo J.; Sanchez-Puente, A.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000377442000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2728
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Accelerated observers and the notion of singular spacetime Type Journal Article
Year 2018 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 35 Issue 5 Pages 055010 - 18pp
Keywords general relativity; geodesic behaviour; black holes; spacetime singularities; modified theories of gravity
Abstract Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.
Address (up) [Olmo, Gonzalo J.; Sanchez-Puente, Antonio] Univ Valencia, Dept Fis Teor, CSIC, Ctr Mixto, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000424042100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3473
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Junction conditions in Palatini f(R) gravity Type Journal Article
Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 37 Issue 21 Pages 215002 - 11pp
Keywords f(R) gravity; junction conditions; Palatini approach; stellar structure
Abstract We work out the junction conditions for f(R) gravity formulated in metric-affine (Palatini) spaces using a tensor distributional approach. These conditions are needed for building consistent models of gravitating bodies with an interior and exterior regions matched at some hypersurface. Some of these conditions depart from the standard Darmois-Israel ones of general relativity and from their metric f(R) counterparts. In particular, we find that the trace of the stress-energy momentum tensor in the bulk must be continuous across the matching hypersurface, though its normal derivative need not to. We illustrate the relevance of these conditions by considering the properties of stellar surfaces in polytropic models, showing that the range of equations of state with potentially pathological effects is shifted beyond the domain of physical interest. This confirms, in particular, that neutron stars and white dwarfs can be safely modelled within the Palatini f(R) framework.
Address (up) [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000575326000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4555
Permanent link to this record