|   | 
Details
   web
Records
Author Agaras, M.N. et al; Fiorini, L.
Title Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2 Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 6 Pages P06023 - 35pp
Keywords Calorimeter methods; Photon detectors for UV; visible and IR photons (vacuum) (photomultipliers; HPDs; others); Calorimeters; Scintillators; scintillation and light emission processes (solid; gas and liquid scintillators)
Abstract This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current.
Address (down) [Agaras, M. N.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain, Email: rute.pedro@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001108200700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5970
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P.
Title Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P01031 - 26pp
Keywords Digital signal processing (DSP); Particle identification methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Neutrino detectors
Abstract Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.
Address (down) [Abrahao, T.; dos Anjos, J. C.; Lima, H.; Pepe, I.; Wagner, S.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: stefan.wagner@apc.in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000423783800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3466
Permanent link to this record