|   | 
Details
   web
Records
Author Escudero, M.; Witte, S.J.
Title A CMB search for the neutrino mass mechanism and its relation to the Hubble tension Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 4 Pages 294 - 10pp
Keywords
Abstract The majoron, a pseudo-Goldstone boson arising from the spontaneous breaking of global lepton number, is a generic feature of many models intended to explain the origin of the small neutrino masses. In this work, we investigate potential imprints in the cosmic microwave background (CMB) arising from massive majorons, should they thermalize with neutrinos after Big Bang Nucleosynthesis via inverse neutrino decays. We show that Planck2018 measurements of the CMB are currently sensitive to neutrino-majoron couplings as small as lambda similar to 10-13, which if interpreted in the context of the type-I seesaw mechanism correspond to a lepton number symmetry breaking scale vL similar to O(100)GeV Additionally, we identify parameter space for which the majoron-neutrino interactions, collectively with an extra contribution to the effective number of relativistic species Neff, can ameliorate the outstanding H0 tension.
Address (down) [Escudero, Miguel] Kings Coll London, Dept Phys, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000523450600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4361
Permanent link to this record
 

 
Author Escudero, M.; Witte, S.J.; Hooper, D.
Title Hidden sector dark matter and the Galactic Center gamma-ray excess: a closer look Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 042 - 29pp
Keywords dark matter experiments; dark matter theory
Abstract Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.
Address (down) [Escudero, Miguel; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000417561900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3412
Permanent link to this record
 

 
Author Caputo, A.; Regis, M.; Taoso, M.; Witte, S.J.
Title Detecting the stimulated decay of axions at radio frequencies Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 027 - 22pp
Keywords axions; dark matter theory; dark matter detectors; dwarfs galaxies
Abstract Assuming axion-like particles account for the entirety of the dark matter in the Universe, we study the possibility of detecting their decay into photons at radio frequencies. We discuss different astrophysical targets, such as dwarf spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The presence of an ambient radiation field leads to a stimulated enhancement of the decay rate; depending on the environment and the mass of the axion, the effect of stimulated emission may amplify the photon flux by serval orders of magnitude. For axion-photon couplings allowed by astrophysical and laboratory constraints (and possibly favored by stellar cooling), we find the signal to be within the reach of next-generation radio telescopes such as the Square Kilometer Array.
Address (down) [Caputo, Andrea; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea0292@hotmail.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000461450100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3944
Permanent link to this record
 

 
Author Caputo, A.; Pena-Garay, C.; Witte, S.J.
Title Looking for axion dark matter in dwarf spheroidal galaxies Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages 083024 - 6pp
Keywords
Abstract We study the extent to which the decay of cold dark matter axions can be probed with forthcoming radio telescopes such as the Square Kilometer Array (SKA). In particular, we focus on signals arising from dwarf spheroidal galaxies, where astrophysical uncertainties are reduced and the expected magnetic field strengths are such that signals arising from axion decay may dominate over axion-photon conversion in a magnetic field. We show that with similar to 100 hr of observing time, SKA could improve current sensitivity by 2-3 orders of magnitude-potentially obtaining sufficient sensitivity to begin probing the decay of cold dark matter axions.
Address (down) [Caputo, Andrea; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000448458600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3788
Permanent link to this record
 

 
Author Blas, D.; Witte, S.J.
Title Imprints of axion superradiance in the CMB Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages 103018 - 10pp
Keywords
Abstract Light axions (m(a) less than or similar to 10(-10) eV) can form dense clouds around rapidly rotating astrophysical black holes via a mechanism known as rotational superradiance. The coupling between axions and photons induces a parametric resonance, arising from the stimulated decay of the axion cloud, which can rapidly convert regions of large axion number densities into an enormous flux of low-energy photons. In this work we consider the phenomenological implications of a superradiant axion cloud undergoing resonant decay. We show that the low-energy photons produced from such events will be absorbed over cosmologically short distances, potentially inducing massive shockwaves that heat and ionize the intergalactic medium over Mpc scales. These shockwaves may leave observable imprints in the form of anisotropic spectral distortions or inhomogeneous features in the optical depth.
Address (down) [Blas, Diego] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: diego.blas@kcl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000589606900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4609
Permanent link to this record