|   | 
Details
   web
Records
Author Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title New light rings from multiple critical curves as observational signatures of black hole mimickers Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 829 Issue Pages 137045 - 5pp
Keywords
Abstract We argue that the appearance of additional light rings in a shadow observation – beyond the infinite sequence of exponentially demagnified self-similar rings foreseen in the Kerr solution – would make a compelling case for the existence of black hole mimickers having multiple critical curves. We support this claim by discussing three different scenarios of spherically symmetric wormhole geometries having two such critical curves, and explicitly work out the optical appearance of one such object when surrounded by an optically and geometrically thin accretion disk.
Address (down) [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto Univ Valencia, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000821533700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5290
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Importance of torsion and invariant volumes in Palatini theories of gravity Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 8 Pages 084030 - 11pp
Keywords
Abstract We study the field equations of extensions of general relativity formulated within a metric-affine formalism setting torsion to zero (Palatini approach). We find that different (second-order) dynamical equations arise depending on whether torsion is set to zero (i) a priori or (ii) a posteriori, i.e., before or after considering variations of the action. Considering a generic family of Ricci-squared theories, we show that in both cases the connection can be decomposed as the sum of a Levi-Civita connection and terms depending on a vector field. However, while in case (i) this vector field is related to the symmetric part of the connection, in (ii) it comes from the torsion part and, therefore, it vanishes once torsion is completely removed. Moreover, the vanishing of this torsion-related vector field immediately implies the vanishing of the antisymmetric part of the Ricci tensor, which therefore plays no role in the dynamics. Related to this, we find that the Levi-Civita part of the connection is due to the existence of an invariant volume associated with an auxiliary metric h(mu v), which is algebraically related with the physical metric g(mu v).
Address (down) [Olmo, Gonzalo J.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000326107300007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1630
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Accelerated observers and the notion of singular spacetime Type Journal Article
Year 2018 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 35 Issue 5 Pages 055010 - 18pp
Keywords general relativity; geodesic behaviour; black holes; spacetime singularities; modified theories of gravity
Abstract Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.
Address (down) [Olmo, Gonzalo J.; Sanchez-Puente, Antonio] Univ Valencia, Dept Fis Teor, CSIC, Ctr Mixto, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000424042100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3473
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Geodesic completeness in a wormhole spacetime with horizons Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 4 Pages 044047 - 16pp
Keywords
Abstract The geometry of a spacetime containing a wormhole generated by a spherically symmetric electric field is investigated in detail. These solutions arise in high-energy extensions of general relativity formulated within the Palatini approach and coupled to Maxwell electrodynamics. Even though curvature divergences generically arise at the wormhole throat, we find that these spacetimes are geodesically complete. This provides an explicit example where curvature divergences do not imply spacetime singularities.
Address (down) [Olmo, Gonzalo J.; Sanchez-Puente, A.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000360065000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2359
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Classical resolution of black hole singularities via wormholes Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 3 Pages 143 - 6pp
Keywords
Abstract In certain extensions of General Relativity, wormholes generated by spherically symmetric electric fields can resolve black hole singularities without necessarily removing curvature divergences. This is shown by studying geodesic completeness, the behavior of time-like congruences going through the divergent region, and by means of scattering of waves off the wormhole. This provides an example of the logical independence between curvature divergences and space-time singularities, concepts very often identified with each other in the literature.
Address (down) [Olmo, Gonzalo J.; Sanchez-Puente, A.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000375302500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2655
Permanent link to this record