|   | 
Details
   web
Records
Author Stoppa, F.; Ruiz de Austri, R.; Vreeswijk, P.; Bhattacharyya, S.; Caron, S.; Bloemen, S.; Zaharijas, G.; Principe, G.; Vodeb, V.; Groot, P.J.; Cator, E.; Nelemans, G.
Title AutoSourceID-FeatureExtractor Optical image analysis using a two-step mean variance estimation network for feature estimation and uncertainty characterisation Type Journal Article
Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 680 Issue Pages A108 - 14pp
Keywords astronomical databases: miscellaneous; methods: data analysis; stars: imaging; techniques: image processing
Abstract Aims. In astronomy, machine learning has been successful in various tasks such as source localisation, classification, anomaly detection, and segmentation. However, feature regression remains an area with room for improvement. We aim to design a network that can accurately estimate sources' features and their uncertainties from single-band image cutouts, given the approximated locations of the sources provided by the previously developed code AutoSourceID-Light (ASID-L) or other external catalogues. This work serves as a proof of concept, showing the potential of machine learning in estimating astronomical features when trained on meticulously crafted synthetic images and subsequently applied to real astronomical data.Methods. The algorithm presented here, AutoSourceID-FeatureExtractor (ASID-FE), uses single-band cutouts of 32x32 pixels around the localised sources to estimate flux, sub-pixel centre coordinates, and their uncertainties. ASID-FE employs a two-step mean variance estimation (TS-MVE) approach to first estimate the features and then their uncertainties without the need for additional information, for example the point spread function (PSF). For this proof of concept, we generated a synthetic dataset comprising only point sources directly derived from real images, ensuring a controlled yet authentic testing environment.Results. We show that ASID-FE, trained on synthetic images derived from the MeerLICHT telescope, can predict more accurate features with respect to similar codes such as SourceExtractor and that the two-step method can estimate well-calibrated uncertainties that are better behaved compared to similar methods that use deep ensembles of simple MVE networks. Finally, we evaluate the model on real images from the MeerLICHT telescope and the Zwicky Transient Facility (ZTF) to test its transfer learning abilities.
Address (up) [Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Groot, P. J.; Nelemans, G.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: f.stoppa@astro.ru.nl
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:001131898100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5887
Permanent link to this record
 

 
Author Strege, C.; Bertone, G.; Besjes, G.J.; Caron, S.; Ruiz de Austri, R.; Strubig, A.; Trotta, R.
Title Profile likelihood maps of a 15-dimensional MSSM Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 081 - 59pp
Keywords Supersymmetry Phenomenology
Abstract We present statistically convergent profile likelihood maps obtained via global fits of a phenomenological Minimal Supersymmetric Standard Model with 15 free parameters (the MSSM-15), based on over 250M points. We derive constraints on the model parameters from direct detection limits on dark matter, the Planck relic density measurement and data from accelerator searches. We provide a detailed analysis of the rich phenomenology of this model, and determine the SUSY mass spectrum and dark matter properties that are preferred by current experimental constraints. We evaluate the impact of the measurement of the anomalous magnetic moment of the muon (g – 2) on our results, and provide an analysis of scenarios in which the lightest neutralino is a subdominant component of the dark matter. The MSSM-15 parameters are relatively weakly constrained by current data sets, with the exception of the parameters related to dark matter phenomenology (M-1, M-2, mu), which are restricted to the sub-TeV regime, mainly due to the relic density constraint. The mass of the lightest neutralino is found to be < 1.5TeV at 99% C.L., but can extend up to 3 TeV when excluding the g – 2 constraint from the analysis. Low-mass bino-like neutralinos are strongly favoured, with spin-independent scattering cross-sections extending to very small values, similar to 10(-20) pb. ATLAS SUSY null searches strongly impact on this mass range, and thus rule out a region of parameter space that is outside the reach of any current or future direct detection experiment. The best-fit point obtained after inclusion of all data corresponds to a squark mass of 2.3 TeV, a gluino mass of 2.1 TeV and a 130 GeV neutralino with a spin-independent cross-section of 2.4 x 10(-10) pb, which is within the reach of future multi-ton scale direct detection experiments and of the upcoming LHC run at increased centre-of-mass energy.
Address (up) [Strege, C.; Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Imperial Ctr Inference & Cosmol, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000342069700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1934
Permanent link to this record
 

 
Author van Beekveld, M.; Beenakker, W.; Caron, S.; Peeters, R.; Ruiz de Austri, R.
Title Supersymmetry with dark matter is still natural Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 3 Pages 035015 - 7pp
Keywords
Abstract We identify the parameter regions of the phenomenological minimal supersymmetric standard model (pMSSM) with the minimal possible fine-tuning. We show that the fine-tuning of the pMSSM is not large, nor under pressure by LHC searches. Low sbottom, stop and gluino masses turn out to be less relevant for low fine-tuning than commonly assumed. We show a link between low fine-tuning and the dark matter relic density. Fine-tuning arguments point to models with a dark matter candidate yielding the correct dark matter relic density: a bino-higgsino particle with a mass of 35-155 GeV. Some of these candidates are compatible with recent hints seen in astrophysics experiments such as Fermi-LAT and AMS-02. We argue that upcoming direct search experiments, such as XENON1T, will test all of the most natural solutions in the next few years due to the sensitivity of these experiments on the spin-dependent WIMP-nucleon cross section.
Address (up) [van Beekveld, Melissa; Beenakker, Wim; Caron, Sascha] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000407779600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3246
Permanent link to this record
 

 
Author van Beekveld, M.; Beenakker, W.; Caron, S.; Ruiz de Austri, R.
Title The case for 100 GeV bino dark matter: a dedicated LHC tri-lepton search Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 154 - 26pp
Keywords Supersymmetry Phenomenology
Abstract Global fit studies performed in the pMSSM and the photon excess signal originating from the Galactic Center seem to suggest compressed electroweak supersymmetric spectra with a similar to 100 GeV bino-like dark matter particle. We find that these scenarios are not probed by traditional electroweak supersymmetry searches at the LHC. We propose to extend the ATLAS and CMS electroweak supersymmetry searches with an improved strategy for bino-like dark matter, focusing on chargino plus next-to-lightest neutralino production, with a subsequent decay into a tri-lepton final state. We explore the sensitivity for pMSSM scenarios with Delta m = m(NLSP) – m(LSF) similar to(5 – 50) GeV in the root s = 14 TeV run of the LHC. Counterintuitively, we find that the requirement of low missing transverse energy increases the sensitivity compared to the current ATLAS and CMS searches. With 300 fb(-1) of data we expect the LHC experiments to be able to discover these supersymmetric spectra with mass gaps down to Am 9 GeV for DM masses between 40 and 140 GeV. We stress the importance of a dedicated search strategy that targets precisely these favored pMSSM spectra.
Address (up) [van Beekveld, Melissa; Beenakker, Wim; Caron, Sascha] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 ED Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000375055200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2648
Permanent link to this record
 

 
Author van Beekveld, M.; Caron, S.; Ruiz de Austri, R.
Title The current status of fine-tuning in supersymmetry Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 147 - 41pp
Keywords Supersymmetry Phenomenology
Abstract In this paper, we minimize and compare two different fine-tuning measures in four high-scale supersymmetric models that are embedded in the MSSM. In addition, we determine the impact of current and future dark matter direct detection and collider experiments on the fine-tuning. We then compare the low-scale electroweak measure with the high-scale Barbieri-Giudice measure. We find that they reduce to the same value when the higgsino parameter drives the degree of fine-tuning. We also find spectra where the high-scale measure turns out to be lower than the low-scale measure. Depending on the high-scale model and fine-tuning definition, we find a minimal fine-tuning of 3-38 (corresponding to O(10-1)%) for the low-scale measure, and 63-571 (corresponding to O(1-0.1)%) for the high-scale measure. We stress that it is too early to conclude on the fate of supersymmetry, based only on the fine-tuning paradigm.
Address (up) [van Beekveld, Melissa; Caron, Sascha] Radboud Univ Nijmegen, Theoret High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000512011100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4275
Permanent link to this record