|   | 
Details
   web
Records
Author Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; Garcia, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A.; Sadrozinski, H.F.W.
Title Low-resistance strip sensors for beam-loss event protection Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 765 Issue Pages 252-257
Keywords Silicon radiation detectors; Strip sensors; Punch through protection; Beam loss; HL-LHC; ATLAS Upgrade
Abstract AC coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punchthrough structure leading to large voltages. We present here our developments to fabricate lowresistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.
Address (up) [Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.] CSIC, Ctr Nacl Microelect IMB CNM, Barcelona 08193, Spain, Email: Miguel.Ullan@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344621000048 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2003
Permanent link to this record
 

 
Author Valero, A.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Sanchis, E.; Solans, C.; Torres, J.; Valls Ferrer, J.A.
Title The ATLAS tile calorimeter ROD injector and multiplexer board Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 629 Issue 1 Pages 74-79
Keywords LHC; ATLAS; Calorimeter; Data acquisition; FPGA; Bit error rate
Abstract The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.
Address (up) [Valero, A.; Castillo, V.; Ferrer, A.; Hernandez, Y.; Higon, E.; Solans, C.; Valls, J. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: alberto.valero@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000287556100012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 555
Permanent link to this record
 

 
Author AGATA Collaboration (Valiente-Dobon, J.J. et al); Perez-Vidal, R.M.; Blasco Miquel, J.; Civera, J.V.; Gadea, A.
Title Conceptual design of the AGATA 2 pi array at LNL Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1049 Issue Pages 168040 - 14pp
Keywords AGATA spectrometer; LNL facility; gamma-ray tracking; Pulse shape analysis; PRISMA spectrometer; EUCLIDES detector; DANTE detector; TRACE detector; Plunger device
Abstract The Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1n,and progressively the number of ATCs will increase up to a 2 pi angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem-PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy gamma-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL.
Address (up) [Valiente-Dobon, J. J.; Goasduff, A.; Angelini, F.; Balogh, M.; Brugnara, D.; Cocconi, P.; Cogo, A.; Collado, J.; Ertoprak, A.; Galtarossa, F.; Gambalonga, A.; Gongora Servin, B.; Gottardo, A.; Gozzelino, A.; Gulmini, M.; Marchi, T.; Modanese, P.; Napoli, D. R.; Pellumaj, J.; Perez-Vidal, R. M.; Pilotto, E.; Raniero, W.; Rosso, D.; Scarpa, D.; Sedlak, M.; Toniolo, N.; Volpe, V.; Zago, L.; Zanon, I.; Allegrini, M. L.; Benini, D.; Biasotto, M.; Corradi, L.; De Angelis, G.; De Ruvo, L.; Fantinel, S.; Fioretto, E.; Minarello, A.; Stefanini, A. M.] INFN, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001020811800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5590
Permanent link to this record
 

 
Author Valiente-Dobon, J.J. et al; Egea, J.; Huyuk, T.; Gadea, A.; Aliaga, R.; Jurado-Gomez, M.L.; Perez-Vidal, R.M.
Title NEDA-NEutron Detector Array Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 927 Issue Pages 81-86
Keywords NEDA; Nuclear structure; Gamma-ray spectroscopy; Neutron detector; Liquid scintillator; Digital electronics; Neutron-gamma discrimination
Abstract The NEutron Detector Array, NEDA, will form the next generation neutron detection system that has been designed to be operated in conjunction with gamma-ray arrays, such as the tracking-array AGATA, to aid nuclear spectroscopy studies. NEDA has been designed to be a versatile device, with high-detection efficiency, excellent neutron-gamma discrimination, and high rate capabilities. It will be employed in physics campaigns in order to maximise the scientific output, making use of the different stable and radioactive ion beams available in Europe. The first implementation of the neutron detector array NEDA with AGATA 1 pi was realised at GANIL. This manuscript reviews the various aspects of NEDA.
Address (up) [Valiente-Dobon, J. J.; Jaworski, G.; Goasduff, A.; Egea, J.; Modamio, V; de Angelis, G.; Bissiato, E.; Carturan, S.; Cocconi, P.; Conventi, D.; Deltoro, J. M.; Hadynska-Klekn, K.; Illan, A.; Raggio, A.; Siciliano, M.; Zanon, I] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000462142700010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3956
Permanent link to this record
 

 
Author Vilella, E.; Alonso, O.; Trenado, J.; Vila, A.; Casanova, R.; Vos, M.; Garrido, L.; Dieguez, A.
Title A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 694 Issue Pages 199-204
Keywords The Geiger-mode avalanche photodiode (GAPD); CMOS; EUDET/AIDA telescope; Schottky detector; Test beam; Trigger logic unit (TLU)
Abstract It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.
Address (up) [Vilella, E.; Alonso, O.; Vila, A.; Casanova, R.; Dieguez, A.] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain, Email: evilella@el.ub.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311020500029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1256
Permanent link to this record