|   | 
Details
   web
Records
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for a diffuse flux of high-energy nu(mu) with the ANTARES neutrino telescope Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 696 Issue 1-2 Pages 16-22
Keywords Neutrino telescope; Diffuse muon neutrino flux; ANTARES
Abstract A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A (0.83 x 2 pi) sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an E-2 flux spectrum, a 90% c.l. upper limit on the diffuse nu(mu) flux of E-2 Phi(90%) = 5.3 x 10(-8) GeV cm(-2) s(-1) sr(-1) in the energy range 20 TeV-2.5 PeV is obtained. Other signal models with different energy spectra are also tested and some rejected.
Address (up) [Bazzotti, M.; Biagi, S.; Carminati, G.; Cecchini, S.; Chiarusi, T.; Giacomelli, G.; Margiotta, A.; Spurio, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy, Email: spurio@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000286708900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 561
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector Type Journal Article
Year 2010 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 34 Issue 3 Pages 179-184
Keywords Atmospheric muons; Neutrino telescope; Depth-intensity relation
Abstract The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.
Address (up) [Bazzotti, M.; Biagi, S.; Carminati, G.; Giacomelli, G.; Margiotta, A.; Spurio, M.] Dipartimento Fis Univ, I-40127 Bologna, Italy, Email: Annarita.Margiotta@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000282496000005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 373
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P.
Title Reactor rate modulation oscillation analysis with two detectors in Double Chooz Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 190 - 18pp
Keywords Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract A theta (13) oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of theta (13) and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the nu <mml:mo stretchy=“true”><overbar></mml:mover>e interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and Li-9 decays. The background-model-independent determination of the mixing angle yields sin(2)(2 theta (13)) = 0.094 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on theta (13) to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation.
Address (up) [Bekman, I; Hellwig, D.; Soldin, P.; Stahl, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany, Email: navas@lal.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000616730800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4728
Permanent link to this record
 

 
Author Bellomo, N.; Bellini, E.; Hu, B.; Jimenez, R.; Pena-Garay, C.; Verde, L.
Title Hiding neutrino mass in modified gravity cosmologies Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 043 - 12pp
Keywords cosmological neutrinos; modified gravity; neutrino astronomy; neutrino masses from cosmology
Abstract Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.
Address (up) [Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia] Univ Barcelona UB IEEC, ICC, Marti & Franques 1, Barcelona 08028, Spain, Email: nicola.bellomo@icc.ub.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000399455000043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3078
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Long-lived heavy neutral leptons from mesons in effective field theory Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 015 - 38pp
Keywords New Light Particles; SMEFT; Sterile or Heavy Neutrinos
Abstract In the framework of the low-energy effective field theory of the Standard Model extended with heavy neutral leptons (HNLs), we calculate the production rates of HNLs from meson decays triggered by dimension-six operators. We consider both lepton number-conserving and lepton-number-violating four-fermion operators involving either a pair of HNLs or a single HNL. Assuming that HNLs are long-lived, we perform simulations and investigate the reach of the proposed far detectors at the high-luminosity LHC to (i) active-heavy neutrino mixing and (ii) the Wilson coefficients associated with the effective operators, for HNL masses below the mass of the B-meson. We further convert the latter to the associated new-physics scales. Our results show that scales in excess of hundreds of TeV and the active-heavy mixing squared as small as 10(-15 )can be probed by these experiments.
Address (up) [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000909520000005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5455
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Long-lived heavy neutral leptons at the LHC: four-fermion single-N-R operators Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 044 - 18pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the N-R SMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the N-R SMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.
Address (up) [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000742012500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5079
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Reinterpretation of searches for long-lived particles from meson decays Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 031 - 31pp
Keywords New Light Particles; Axions and ALPs; Sterile or Heavy Neutrinos; SMEFT
Abstract Many models beyond the Standard Model predict light and feebly interacting particles that are often long-lived. These long-lived particles (LLPs) in many cases can be produced from meson decays. In this work, we propose a simple and quick reinterpretation method for models predicting LLPs produced from meson decays. With the method, we are not required to run Monte-Carlo simulation, implement detector geometries and efficiencies, or apply experimental cuts in an event analysis, as typically done in recasting and reinterpretation works. The main ingredients our method requires are only the theoretical input, allowing for computation of the production and decay rates of the LLPs. There are two conditions for the method to work: firstly, the LLPs in the models considered should be produced from a set of mesons with similar mass and lifetime (or the same meson) and second, the LLPs should, in general, have a lab-frame decay length much larger than the distance between the interaction point and the detector. As an example, we use this method to reinterpret exclusion bounds on heavy neutral leptons (HNLs) in the minimal “3+1” scenario, into those for HNLs in the general effective-field-theory framework as well as for axion-like particles. We are able to reproduce existing results, and obtain new bounds via reinterpretation of past experimental results, in particular, from CHARM and Belle.
Address (up) [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, 22085, E-46071 Valencia, Spain, Email: wzs@mx.nthu.edu.tw
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000983316500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5528
Permanent link to this record
 

 
Author Beltran, R.; Cepedello, R.; Hirsch, M.
Title Tree-level UV completions for NRSMEFT d=6 and d=7 operators Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 31pp
Keywords Baryon/Lepton Number Violation; SMEFT; Sterile or Heavy Neutrinos
Abstract We study ultra-violet completions for operators in standard model effective field theory extended with right-handed neutrinos (NRSMEFT). Using a diagrammatic method, we generate systematically lists of possible tree-level completions involving scalars, fermions or vectors for all operators at d = 6 and d = 7, which contain at least one right-handed neutrino. We compare our lists of possible UV models to the ones found for pure SMEFT. We also discuss how the observation of LNV processes via NRSMEFT operators at the LHC can be related to Majorana neutrino masses of the standard model neutrinos.
Address (up) [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: rebeca.beltran@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001054461600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5625
Permanent link to this record
 

 
Author Beniwal, A.; Herrero-Garcia, J.; Leerdam, N.; White, M.; Williams, A.G.
Title The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 136 - 34pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract The Scotogenic Model is one of the most minimal models to account for both neutrino masses and dark matter (DM). In this model, neutrino masses are generated at the one-loop level, and in principle, both the lightest fermion singlet and the lightest neutral component of the scalar doublet can be viable DM candidates. However, the correct DM relic abundance can only be obtained in somewhat small regions of the parameter space, as there are strong constraints stemming from lepton flavour violation, neutrino masses, electroweak precision tests and direct detection. For the case of scalar DM, a sufficiently large lepton-number-violating coupling is required, whereas for fermionic DM, coannihilations are typically necessary. In this work, we study how the new scalar singlet modifies the phenomenology of the Scotogenic Model, particularly in the case of scalar DM. We find that the new singlet modifies both the phenomenology of neutrino masses and scalar DM, and opens up a large portion of the parameter space of the original model.
Address (up) [Beniwal, Ankit] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain La Neuve, Belgium, Email: ankit.beniwal@uclouvain.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000668611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4881
Permanent link to this record
 

 
Author Bennett, J.J.; Buldgen, G.; de Salas, P.F.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y.Y.Y.
Title Towards a precision calculation of the effective number of neutrinos N-eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 073 - 33pp
Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe
Abstract We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, N-eff(SM), that quantifies the cosmological neutrinoto-photon energy densities. The calculation takes into account neutrino flavour oscillations, finite-temperature effects in the quantum electrodynamics plasma to O(e(3)), where e is the elementary electric charge, and a full evaluation of the neutrino-neutrino collision integral. We provide furthermore a detailed assessment of the uncertainties in the benchmark N(eff)(SM )value, through testing the value's dependence on (i) optional approximate modelling of the weak collision integrals, (ii) measurement errors in the physical parameters of the weak sector, and (iii) numerical convergence, particularly in relation to momentum discretisation. Our new, recommended standard-model benchmark is N-eff(SM) 3.0440 +/- 0.0002, where the nominal uncertainty is attributed predominantly to errors incurred in the numerical solution procedure (vertical bar delta N-eff vertical bar similar to 10(-4)), augmented by measurement errors in the solar mixing angle sin(2) theta(12) (vertical bar delta N-eff vertical bar similar to 10(-4)).
Address (up) [Bennett, Jack J.; Wong, Yvonne Y. Y.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: j.j.bennett@unsw.edu.au;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000647827600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4827
Permanent link to this record