Perkowski, J. et al, Babiano-Suarez, V., Balibrea Correa, J., Domingo-Pardo, C., Ladarescu, I., & Lerendegui-Marco, J. (2024). Multi-section fission ionization chamber for measurement of 239Pu(n, γ) reaction in fission tagging method. Nucl. Instrum. Methods Phys. Res. A, 1067, 169649–8pp.
Abstract: The Pu-239(n, gamma) reaction cross section is very important for operation of both thermal and fast reactors, when loaded with MOX fuels. According to the NEA/OECD High Priority Request List the precision of cross section data for this reaction should be improved. The cross section of (n, f) reaction is much higher compared to (n, gamma) for this isotope. In such conditions the fission tagging technique could be applied to identify the fission background. In the past, this technique was successfully used for capture measurements at the nTOF facility at CERN. The multi-section fission ionization chamber was constructed and used in the combination with Total Absorption Calorimeter (TAC) for detecting gamma rays for the precise measurement of Pu-239(n, gamma) reaction cross section at the nTOF facility.
|
n_TOF Collaboration(Praena, J. et al), Domingo-Pardo, C., Giubrone, G., Tain, J. L., & Tarifeño-Saldivia, A. (2018). Preparation and characterization of S-33 samples for S-33(n,alpha)Si-30 cross-section measurements at the n_TOF facility at CERN. Nucl. Instrum. Methods Phys. Res. A, 890, 142–147.
Abstract: Thin S-33 samples for the study of the S-33(n,alpha)Si-30 cross-section at the n_TOF facility at CERN were made by thermal evaporation of S-33 powder onto a dedicated substrate made of kapton covered with thin layers of copper, chromium and titanium. This method has provided for the first time bare sulfur samples a few centimeters in diameter. The samples have shown an excellent adherence with no mass loss after few years and no sublimation in vacuum at room temperature. The determination of the mass thickness of S-33 has been performed by means of Rutherford backscattering spectrometry. The samples have been successfully tested under neutron irradiation.
|
PreSPEC and AGATA Collaborations(Ralet, D. et al), & Gadea, A. (2015). Data-flow coupling and data-acquisition triggers for the PreSPEC-AGATA campaign at GSI. Nucl. Instrum. Methods Phys. Res. A, 786, 32–39.
Abstract: The PreSPEC setup for high-resolution 'gamma-ray spectroscopy using radioactive ion beams was employed for experimental campaigns in 2012 and 2014. The setup consisted of the state of the art Advanced GAmma Tracking Array (AGATA) and the High Energy gamma cleteCTOR (HECTOR+) positioned around a secondary target at the final focal plane of the GSI FRagment Separator (FRS) to perform in-beam gamma-ray spectroscopy of exotic nuclei. The Lund York Cologne CAlorimeter (LYCCA) was used to identify the reaction products. In this paper we report on the trigger scheme used during the campaigns. The dataflow coupling between the Multi-Branch System (MBS) based Data AcQuisition (DAQ) used for FRS-LYCCA and the “Nouvelle Acquisition temps Reel Version 1.2 Avec Linux” (NARVAL) based acquisition system used for AGATA are also described.
|
Rasco, B. C., Brewer, N. T., Yokoyama, R., Grzywacz, R., Rykaczewski, K. P., Tolosa-Delgado, A., et al. (2018). The ORNL analysis technique for extracting beta-delayed multi-neutron branching ratios with BRIKEN. Nucl. Instrum. Methods Phys. Res. A, 911, 79–86.
Abstract: Many choices are available in order to evaluate large radioactive decay networks. There are many parameters that influence the calculated beta-decay delayed single and multi-neutron emission branching fractions. We describe assumptions about the decay model, background, and other parameters and their influence on beta-decay delayed multi-neutron emission analysis. An analysis technique, the ORNL BRIKEN analysis procedure, for determining beta-delayed multi-neutron branching ratios in beta-neutron precursors produced by means of heavy-ion fragmentation is presented. The technique is based on estimating the initial activities of zero, one, and two neutrons occurring in coincidence with an ion-implant and beta trigger. The technique allows one to extract beta-delayed multi-neutron decay branching ratios measured with the He-3 BRIKEN neutron counter. As an example, two analyses of the beta-neutron emitter Cu-77 based on different a priori assumptions are presented along with comparisons to literature values.
|
Real, D., & Calvo, D. (2022). Production requirements and functional tests of the KM3NeT Digital Optical Module Power Board. Nucl. Instrum. Methods Phys. Res. A, 1042, 167426–3pp.
Abstract: The KM3NeT research facility is being built in the Mediterranean Sea. It consists of matrices of optical detectors, the so-called Digital Optical Module. Each of this elementary detector holds a set of 31 small-area photomultipliers, which detect the Cherenkov light generated by secondary particles produced in neutrino interactions. It includes also the acquisition electronics and the power board which supplies both, the acquisition electronics and the photomultipliers. The production of electronics boards needs to have a high quality and reliability level as it is going to be deployed for more than ten years without any maintenance possible. This work presents the requirements and the qualification tests being implemented in order to increase the reliability of the Power Board of the acquisition electronics of KM3NeT during the mass production. At the moment, more than one thousand board have been produced. Results on the production of the boards, including the production yield is presented. From the already produced boards, more than 350 have been already deployed and are operative in the detectors.
|