|   | 
Details
   web
Records
Author AGATA Collaboration (Clement, E. et al); Domingo-Pardo, C.; Gadea, A.; Perez-Vidal, R.M.; Civera, J.V.
Title Conceptual design of the AGATA 1 pi array at GANIL Type Journal Article
Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 855 Issue Pages 1-12
Keywords AGATA spectrometer; GANIL facility; gamma-ray tracking; Pulse shape analysis; VAMOS plus plus spectrometer; NEDA detector; DIAMANT detector; PARIS LaBr3 detector; FATIMA LaBr3 detector; Plunger device
Abstract The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam gamma-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy gamma rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l pi array are presented.
Address (down) [Clement, E.; Michelagnoli, C.; de France, G.; Li, H. J.; Lemasson, A.; Dejeon, C. Barthe; Beuzard, M.; Bougault, P.; Cacitti, J.; Foucher, J. -L.; Fremont, G.; Gangnant, P.; Goupil, J.; Houarner, C.; Jean, M.; Lefevre, A.; Legeard, L.; Legruel, F.; Maugeais, C.; Menager, L.; Menard, N.; Munoz, H.; Ozille, M.; Raine, B.; Ropert, J. A.; Saillant, F.; Spitaels, C.; Tripon, M.; Vallerand, Ph.; Voltolini, G.; Lopez-Martens, A.] CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000399846900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3091
Permanent link to this record
 

 
Author Clement, E. et al; Domingo-Pardo, C.; Gadea, A.
Title Spectroscopic quadrupole moments in 124Xe Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 1 Pages 014324 - 8pp
Keywords
Abstract Background: The Xe isotopic chain with four valence protons above the Z = 50 shell closure is an ideal laboratory for the study of the evolution of nuclear deformation. At the N = 82 shell closure, 136Xe presents all characteristics of a doubly closed shell nucleus with a spherical shape. In the very neutron-deficient isotopes close to N = 50, the alpha-decay chain of Xe was investigated to probe the radioactive decay properties near the drip-line and the magicity of 100Sn. Additionally, the Xe isotopes present higher order symmetries in the nuclear deformation such as the octupole degree of freedom near N = 60 and N = 90 or O(6) symmetry in stable isotopes.Purpose: The relevance of the O(6) symmetry has been investigated by measuring the spectroscopic quadrupole moment of the first excited states in 124Xe. In the O(6) symmetry limit, the spectroscopic quadrupole moment of collective states is expected to be null.Method: A stable 124Xe beam with energies of 4.03A MeV and 4.11A MeV was used to bombard a natW target at the GANIL facility. Excited states were populated via the safe Coulomb excitation reaction. The collision of the heavy ions with a large Z at low energy make this reaction sensitive to the diagonal E2 matrix element of the excited states. The recoils were detected in the VAMOS++ magnetic spectrometer and the gamma rays in the AGATA tracking array. The least squares fitting code GOSIA was used for the analysis to extract both E2 and M1 transitional and E2 diagonal matrix elements.Results: The rotational ground state band was populated up to the 8+1 state as well as the 2+2 and 4+2 states. Using high precision spectroscopic data to constrain the GOSIA fit, the spectroscopic quadrupole moments of the 2+1 , 4+1 , and 6+1 states were determined for the first time. Conclusions: The spectroscopic quadrupole moments were found to be negative, large, and constant in the ground state band underlining the prolate axially deformed ground state band of 124Xe. The present experimental data confirm that the is broken in 124Xe.
Address (down) [Clement, E.; Lemasson, A.; Rejmund, M.; Jacquot, B.; Ralet, D.; Michelagnoli, C.; de France, G.] CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000941893100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5493
Permanent link to this record
 

 
Author Cederwall, B. et al; Algora, A.; Gadea, A.
Title Evidence for a spin-aligned neutron-proton paired phase from the level structure of Pd-92 Type Journal Article
Year 2011 Publication Nature Abbreviated Journal Nature
Volume 469 Issue 7328 Pages 68-71
Keywords
Abstract Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work(1) that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing(2-6), in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus Pd-92. Gamma rays emitted following the Ni-58(Ar-36,2n)Pd-92 fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution c-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction(2-6). We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling(7,8)) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.
Address (down) [Cederwall, B.; Moradi, F. Ghazi; Back, T.; Johnson, A.; Blomqvist, J.; Andgren, K.; Lagergren, K.; Liotta, R.; Qi, C.; Hadinia, B.; Khaplanov, A.; Persson, A.; Sandzelius, M.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden, Email: cederwall@nuclear.kth.se
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes ISI:000285921600032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 588
Permanent link to this record
 

 
Author AGATA Collaboration (Cederwall, B. et al); Gadea, A.; Jurado, M.; Domingo-Pardo, C.; Huyuk, T.; Perez-Vidal, R.M.
Title Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus Ru-88 Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 124 Issue 6 Pages 062501 - 6pp
Keywords
Abstract The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N = Z) nuclide Ru-88(44)44 has been measured using the combination of the Advanced Gamma Tracking Array (AGATA) spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in Ru-88 were populated via the Fe-54(Ar-36, 2n gamma)Ru-88* fusion-evaporation reaction at the Grand Accelerateur National d'Ions Lourds (GANIL) accelerator complex. The observed gamma-ray cascade is assigned to Ru-88 using clean prompt gamma-gamma-2-neutron coincidences in anticoincidence with the detection of charged particles, confirming and extending the previously assigned sequence of low-lying excited states. It is consistent with a moderately deformed rotating system exhibiting a band crossing at a rotational frequency that is significantly higher than standard theoretical predictions with isovector pairing, as well as observations in neighboring N > Z nuclides. The direct observation of such a “delayed” rotational alignment in a deformed N = Z nucleus is in agreement with theoretical predictions related to the presence of strong isoscalar neutron-proton pair correlations.
Address (down) [Cederwall, B.; Liu, X.; Aktas, O.; Ertoprak, A.; Zhang, W.; Qi, C.; Nyberg, A. Atac; Back, T.; Doncel, M.; Gottardo, A.] KTH Royal Inst Technol, S-10691 Stockholm, Sweden, Email: cederwall@nuclear.kth.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000513242500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4278
Permanent link to this record
 

 
Author Capra, S. et al; Gadea, A.
Title GALTRACE: A highly segmented silicon detector array for charged particle spectroscopy and discrimination Type Journal Article
Year 2022 Publication Nuovo Cimento C Abbreviated Journal Nuovo Cim. C
Volume 45 Issue 5 Pages 98 - 4pp
Keywords
Abstract GALTRACE is an array of segmented silicon detectors specifically built to work as an ancillary of the GALILEO gamma-ray spectrometer at Legnaro National Laboratory of INFN. GALTRACE consists of four telescopic Delta E-Edetectors which allow discriminating light charged particles also via pulse-shape analysis techniques. The good angular and energy resolutions, together with particle discrimination capabilities, make GALTRACE suitable for experiments where coincidences with specific emitted particles allow for the selection of reaction channels with very low cross section. The first in-beam experiment is reported here, aiming at identifying a narrow resonance, near-proton-threshold state in B-11, currently under discussion.
Address (down) [Capra, S.; Ziliani, S.; LEONI, S.; PULLIA, A.; BOTTONI, S.; CAMERA, F.; CRESPI, F. C. L.; GAMBA, E.; MILLION, B.; POLETTINI, M.] Univ Milan, Milan, Italy
Corporate Author Thesis
Publisher Soc Italiana Fisica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2037-4909 ISBN Medium
Area Expedition Conference
Notes WOS:000819587500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5282
Permanent link to this record