Home | [1–10] << 11 12 13 14 >> |
![]() |
Sanchis-Lozano, M. A., Melia, F., Lopez-Corredoira, M., & Sanchis-Gual, N. (2022). Missing large-angle correlations versus even-odd point-parity imbalance in the cosmic microwave background. Astron. Astrophys., 660, A121–10pp.
Abstract: Context. The existence of a maximum correlation angle (theta(max) & 60 greater than or similar to degrees) in the two-point angular temperature correlations of cosmic microwave background (CMB) radiation, measured by WMAP and Planck, stands in sharp contrast to the prediction of standard inflationary cosmology, in which the correlations should extend across the full sky (i.e., 180 degrees). The introduction of a hard lower cuto ff (k(min)) in the primordial power spectrum, however, leads naturally to the existence of theta(max). Among other cosmological anomalies detected in these data, an apparent dominance of odd-over-even parity multipoles has been seen in the angular power spectrum of the CMB. This feature, however, may simply be due to observational contamination in certain regions of the sky. Aims. In attempting to provide a more detailed assessment of whether this odd-over-even asymmetry is intrinsic to the CMB, we therefore proceed in this paper, first, to examine whether this odd-even parity imbalance also manifests itself in the angular correlation function and, second, to examine in detail the interplay between the presence of theta(max) and this observed anomaly. Methods. We employed several parity statistics and recalculated the angular correlation function for di fferent values of the cuto ff kmin in order to optimize the fit to the di fferent Planck 2018 data. Results. We find a phenomenological connection between these features in the data, concluding that both must be considered together in order to optimize the theoretical fit to the Planck 2018 data. Conclusions. This outcome is independent of whether the parity imbalance is intrinsic to the CMB, but if it is, the odd-over-even asymmetry would clearly point to the emergence of new physics.
|
Schiavone, T., Montani, G., & Bombacigno, F. (2023). f(R) gravity in the Jordan frame as a paradigm for the Hubble tension. Mon. Not. Roy. Astron. Soc., 522(1), L72–L77.
Abstract: We analyse the f(R) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the present study is to show that according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled scalar field, as it emerges in the f(R) gravity. We face the question both from an analytical and purely numerical point of view, following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift z is ensured by a form of the scalar field potential, which remains essentially constant for z less than or similar to 0.3, independently if this request is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we demonstrate that an f(R) dark energy model is able to account for an apparent variation of the Hubble constant due to the rescaling of the Einstein constant by the f(R) scalar mode.
|
Semikoz, V. B., Sokoloff, D. D., & Valle, J. W. F. (2012). Lepton asymmetries and primordial hypermagnetic helicity evolution. J. Cosmol. Astropart. Phys., 06(6), 008–12pp.
Abstract: The hypermagnetic helicity density at the electroweak phase transition (EWPT) exceeds many orders of magnitude the galactic magnetic helicity density. Together with previous magnetic helicity evolution calculations after the EWPT and hypermagnetic helicity conversion to the magnetic one at the EWPT, the present calculation completes the description of the evolution of this important topological feature of cosmological magnetic fields. It suggests that if the magnetic field seeding the galactic dynamo has a primordial origin, it should be substantially helical. This should be taken into account in scenarios of galactic magnetic field evolution with a cosmological seed.
|
Seo, H. J. et al, & de Putter, R. (2012). Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies. Astrophys. J., 761(1), 13–16pp.
Abstract: We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over similar to 10,000 deg(2) between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D-A(z)/r(s) = 9.212(-0.404)(+0.416) at z = 0.54, and therefore D-A(z) = 1411 +/- 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D-A(z) is 1.4 sigma higher than what is expected for the concordance Lambda CDM, in accordance to the trend of other spectroscopic BAO measurements for z greater than or similar to 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.
|
Aristizabal Sierra, D., Tortola, M., Valle, J. W. F., & Vicente, A. (2014). Leptogenesis with a dynamical seesaw scale. J. Cosmol. Astropart. Phys., 07(7), 052–20pp.
Abstract: In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting B – L asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the B – L asymmetry yield turns out to be independent upon initial conditions, in contrast to the “standard” case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal one down to low temperatures, implying a drastic suppression of the efficiency which in some cases can render the B – L generation mechanism inoperative.
|
Stadler, J., Boehm, C., & Mena, O. (2020). Is it mixed dark matter or neutrino masses? J. Cosmol. Astropart. Phys., 01(1), 039–18pp.
Abstract: In this paper, we explore a scenario where the dark matter is a mixture of interacting and non interacting species. Assuming dark matter-photon interactions for the interacting species, we find that the suppression of the matter power spectrum in this scenario can mimic that expected in the case of massive neutrinos. Our numerical studies include present limits from Planck Cosmic Microwave Background data, which render the strength of the dark matter photon interaction unconstrained when the fraction of interacting dark matter is small. Despite the large entangling between mixed dark matter and neutrino masses, we show that future measurements from the Dark Energy Instrument (DESI) could help in establishing the dark matter and the neutrino properties simultaneously, provided that the interaction rate is very close to its current limits and the fraction of interacting dark matter is at least of O (10%). However, for that region of parameter space where a small fraction of interacting DM coincides with a comparatively large interaction rate, our analysis highlights a considerable degeneracy between the mixed dark matter parameters and the neutrino mass scale.
|
Strumia, A., & Landini, G. (2025). Optical gravitational waves as signals of gravitationally-decaying particles. J. High Energy Phys., 04(4), 068–23pp.
Abstract: Long-lived heavy particles present during the big bang could have a decay channel opened by gravitons. Such decays can produce gravitational waves with large enough abundance to be detectable, and a peculiar narrow spectrum peaked today around optical frequencies. We identify which particles can decay in one or two gravitons. The maximal gravitational wave abundance arises from theories with extra hidden strong gauge dynamics, such as a confining pure-glue group. An interesting abundance also arises in theories with perturbative couplings. Future observation might shed light on early cosmology and allow some spectroscopy of sub-Planckian gravitationally-decaying particles, plausibly present in a variety of theories such as gauge unification, supersymmetry, extra dimensions, strings.
|
Pena-Garay, C., Verde, L., & Jimenez, R. (2017). Neutrino footprint in large scale structure. Phys. Dark Universe, 15, 31–34.
Abstract: Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.
Keywords: Cosmology; Neutrinos; Large scale structure
|
Villaescusa-Navarro, F. et al, & Villanueva-Domingo, P. (2023). The CAMELS Project: Public Data Release. Astrophys. J. Suppl. Ser., 265(2), 54–14pp.
Abstract: The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lya spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N-body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at .
|
Villanueva-Domingo, P., Mena, O., & Palomares-Ruiz, S. (2021). A Brief Review on Primordial Black Holes as Dark Matter. Front. Astron. Space Sci., 8, 681084–10pp.
Abstract: Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.
|