|   | 
Details
   web
Records
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L.
Title Neutron-induced fission cross-section of U-233 in the energy range 0.5 < E-n < 20 MeV Type Journal Article
Year 2011 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 47 Issue 1 Pages 2 - 7pp
Keywords
Abstract The neutron-induced fission cross-section of U-233 has been measured at the CERN nTOF facility relative to the standard fission cross-section of U-235 between 0.5 and 20MeV. The experiment was performed with a fast ionization chamber for the detection of the fission fragments and to discriminate against alpha-particles from the natural radioactivity of the samples. The high instantaneous flux and the low background of the nTOF facility result in data with uncertainties of approximate to 3%, which were found in good agreement with previous experiments. The high quality of the present results allows to improve the evaluation of the U-233(n, f) cross-section and, consequently, the design of energy systems based on the Th/U cycle.
Address (up) [Belloni, F.; Milazzo, P. M.; Abbondanno, U.; Fujii, K.; Moreau, C.] Ist Nazl Fis Nucl INFN, Trieste, Italy, Email: paolo.milazzo@ts.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes ISI:000288550800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 539
Permanent link to this record
 

 
Author Bernabeu, J.; Espriu, D.; Puigdomenech, D.
Title Gravitational waves in the presence of a cosmological constant Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 6 Pages 063523 - 13pp
Keywords
Abstract We derive the effects of a nonzero cosmological constant Lambda on gravitational wave propagation in the linearized approximation of general relativity. In this approximation, we consider the situation where the metric can be written as g(mu nu) = eta(mu nu) + h(mu nu)(Lambda) + h(mu nu)(W), h(mu nu)(Lambda,W) << 1, where h(mu nu)(Lambda) is the background perturbation and h(mu nu)(W) is a modification interpretable as a gravitational wave. For Lambda not equal 0, this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized solutions have to be reinterpreted in a coordinate system that is homogeneous and isotropic to make contact with observations. Plane waves in the linear theory acquire modifications of order root Lambda, both in the amplitude and the phase, when considered in Friedmann-Robertson-Walker coordinates. In the linearization process for h(mu nu), we have also included terms of order O(Lambda h(mu nu)). For the background perturbation h(mu nu)(Lambda), the difference is very small, but when the term h(mu nu)(W)Lambda is retained the equations of motion can be interpreted as describing massive spin-2 particles. However, the extra degrees of freedom can be approximately gauged away, coupling to matter sources with a strength proportional to the cosmological constant itself. Finally, we discuss the viability of detecting the modifications caused by the cosmological constant on the amplitude and phase of gravitational waves. In some cases, the distortion with respect to gravitational waves propagating in Minkowski space-time is considerable. The effect of Lambda could have a detectable impact on pulsar timing arrays.
Address (up) [Bernabeu, J] Univ Valencia, Dept Fis Teor IFIC, CSIC, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000295223100005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 766
Permanent link to this record
 

 
Author Bernardoni, F.; Garron, N.; Hernandez, P.; Necco, S.; Pena, C.
Title Probing the chiral regime of N-f=2 QCD with mixed actions Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 5 Pages 054503 - 17pp
Keywords
Abstract We report on our first experiences with a mixed action setup with overlap valence quarks and nonperturbatively O(a) improved Wilson sea quarks. For the latter we employ CLS N-f = 2 configurations with light sea-quark masses at small lattice spacings. Exact chiral symmetry allows to consider very light valence quarks and explore the matching to (partially-quenched) Chiral Perturbation Theory (ChPT) in a mixed epsilon/p-regime. We compute the topological susceptibility and the low-lying spectrum of the massless Neuberger-Dirac operator for three values of the sea-quark mass, and compare the sea-quark mass dependence to NLO ChPT in the mixed regime. This provides two different determinations of the chiral condensate, as well as information about some NLOlow-energy couplings. Our results allow to test the consistency of the mixed-regime approach to ChPT, as well as of the mixed action framework.
Address (up) [Bernardoni, F.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000288389300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 546
Permanent link to this record
 

 
Author Bertolini, S.; Di Luzio, L.; Malinsky, M.
Title Minimal flipped SO(10) x U(1) supersymmetric Higgs model Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 3 Pages 035002 - 28pp
Keywords
Abstract We investigate the conditions on the Higgs sector that allow supersymmetric SO(10) grand unified theories to break spontaneously to the standard electroweak model at the renormalizable level. If one considers Higgs representations of dimension up to the adjoint, a supersymmetric standard model vacuum requires, in most cases, the presence of nonrenormalizable operators. The active role of Planck-induced nonrenormalizable operators in the breaking of the gauge symmetry introduces a hierarchy in the mass spectrum at the grand unified theory scale that may be an issue for gauge unification and proton decay. We show that the minimal Higgs scenario that allows for a renormalizable breaking to the standard model is obtained by considering flipped SO(10) circle times U(1) with one adjoint (45(H)) and two pairs of 16(H) circle plus (16) over bar (H) Higgs representations. We consider a nonanomalous matter content and discuss the embedding of the model in an E-6 grand unified scenario just above the flipped SO(10) scale.
Address (up) [Bertolini, Stefano; Di Luzio, Luca] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy, Email: bertolin@sissa.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286883700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 565
Permanent link to this record
 

 
Author Bertone, G.; Kong, K.C.; Ruiz de Austri, R.; Trotta, R.
Title Global fits of the minimal universal extra dimensions scenario Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 3 Pages 036008 - 15pp
Keywords
Abstract In theories with universal extra dimensions (UED), the gamma(1) particle, first excited state of the hypercharge gauge boson, provides an excellent dark matter (DM) candidate. Here, we use a modified version of the SUPERBAYES code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive, in particular, the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the gamma(1) with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at similar to 10(-11) pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross sections. On the other hand, the LHC with 1 fb(-1) of data should be able to probe the current best-fit UED parameters.
Address (up) [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000287655300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 567
Permanent link to this record