|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Search for quantum black hole production in lepton plus jet final states using proton-proton collisions at √s=13 TeV with the ATLAS detector Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 3 Pages 032010 - 28pp
Keywords
Abstract A search for quantum black holes in electron + jet and muon + jet invariant mass spectra is performed with 140 fb(-1) of data collected by the ATLAS detector in proton-proton collisions at root s = 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton + jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross section times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.
Address (up) [Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Petridis, A.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001183228500014 Approved no
Is ISI International Collaboration
Call Number IFIC @ pastor @ Serial 5987
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P.
Title The Strong Force meets the Dark Sector: a robust estimate of QCD uncertainties for anti-matter dark matter searches Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 119 - 48pp
Keywords Cosmic Rays; Particle Nature of Dark Matter; Specific QCD Phenomenology
Abstract In dark-matter annihilation channels to hadronic final states, stable particles – such as positrons, photons, antiprotons, and antineutrinos – are produced via complex sequences of phenomena including QED/QCD radiation, hadronisation, and hadron decays. These processes are normally modelled by Monte Carlo (MC) event generators whose limited accuracy imply intrinsic QCD uncertainties on the predictions for indirect-detection experiments like Fermi-LAT, Pamela, IceCube or Ams-02. In this article, we perform a comprehensive analysis of QCD uncertainties, meaning both perturbative and nonperturbative sources of uncertainty are included – estimated via variations of MC renormalization-scale and fragmentation-function parameters, respectively – in antimatter spectra from dark-matter annihilation, based on parametric variations of the Pythia 8 event generator. After performing several retunings of light-quark fragmentation functions, we define a set of variations that span a conservative estimate of the QCD uncertainties. We estimate the effects on antimatter spectra for various annihilation channels and final-state particle species, and discuss their impact on fitted values for the dark-matter mass and thermally-averaged annihilation cross section. We find dramatic impacts which can go up to O(10%) for the annihilation cross section. We provide the spectra in tabulated form including QCD uncertainties and code snippets to perform fast dark-matter fits, in this github repository.
Address (up) [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Particle Theory & Cosmol Grp, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001165531600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5956
Permanent link to this record
 

 
Author Jungclaus, A. et al; Gadea, A.; Montaner-Piza, A.
Title Excited-State Half-Lives in 130 Cd and the Isospin Dependence of Effective Charges Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 22 Pages 222501 - 7pp
Keywords
Abstract The known I pi = 8 & thorn; 1 , E x = 2129-keV isomer in the semimagic nucleus 130 Cd 82 was populated in the projectile fission of a 238 U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E x = 2001.2(7) keV, and half-life, T 1 =2 = 57(3) ns, of the I pi = 6 & thorn; 1 state based on gamma gamma coincidence information. Furthermore, the halflife of the 8 & thorn; 1 state, T 1 =2 = 224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for 134 Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for 132 Sn, a doubly magic nucleus far -off stability. A comparison to analogous information for 100 Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.
Address (up) [Jungclaus, A.; Acosta, J.; Taprogge, J.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001250451000017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6160
Permanent link to this record
 

 
Author Jungclaus, A.; Doornenbal, P.; Acosta, J.; Vaquero, V.; Browne, F.; Cortes, M.L.; Gargano, A.; Koiwai, T.; Naidja, H.; Taniuchi, R.; Tostevin, J.A.; Wimmer, K.; Algora, A.; Baba, H.; Fernandez, A.; Lalovic, N.; Nacher, E.; Rubio, B.; Sakurai, H.
Title Position of the single-particle 3/2- state in 135Sn and the N = 90 subshell closure Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 851 Issue Pages 138561 - 5pp
Keywords
Abstract The decay of excited states of the nucleus Sn-135, with three neutrons outside the doubly-magic Sn-132 core, was studied in an experiment performed at the Radioactive Isotope Beam Factory at RIKEN. Several gamma rays emitted from excited Sn-135 ions were observed following one-neutron and one-neutron-one-proton removal from Sn-136 and Sb-137 beams, respectively, on a beryllium target at relativistic energies. Based on the analogy to 133Sn populated via one-neutron removal from Sn-134, an excitation energy of 695(15) keV is assigned to the 3/2(-) state with strongest single-particle character in 135Sn. This result provides the first direct information about the evolution of the neutron shell structure beyond N = 82 and thus allows for a crucial test of shellmodel calculations in this region. The experimental findings are in full agreement with calculations performed employing microscopic effective two-body interactions derived from CD-Bonn and N3LO nucleon-nucleon potentials, which do not predict a pronounced subshell gap at neutron number N=90. The occurrence of such a gap in Sn-140, i.e., when the 1f(7/2) orbital is completely filled, had been proposed in the past, in analogy to the magicity of Ca-48, featuring a completely filled 0f(7/2) orbital one harmonic oscillator shell below.
Address (up) [Jungclaus, A.; Acosta, J.; Vaquero, V.; Fernandez, A.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: andrea.jungclaus@csic.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001208129000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6114
Permanent link to this record
 

 
Author Kalliokoski, M.; Mitsou, V.A.; de Montigny, M.; Mukhopadhyay, A.; Ouimet, P.P.A.; Pinfold, J.; Shaa, A.; Staelens, M.
Title Searching for minicharged particles at the energy frontier with the MoEDAL-MAPP experiment at the LHC Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 137 - 22pp
Keywords Dark Matter at Colliders; Models for Dark Matter; New Gauge Interactions; Specific BSM Phenomenology
Abstract The MoEDAL's Apparatus for Penetrating Particles (MAPP) Experiment is designed to expand the search for new physics at the LHC, significantly extending the physics program of the baseline MoEDAL Experiment. The Phase-1 MAPP detector (MAPP-1) is currently undergoing installation at the LHC's UA83 gallery adjacent to the LHCb/MoEDAL region at Interaction Point 8 and will begin data-taking in early 2024. The focus of the MAPP experiment is on the quest for new feebly interacting particles – avatars of new physics with extremely small Standard Model couplings, such as minicharged particles (mCPs). In this study, we present the results of a comprehensive analysis of MAPP-1's sensitivity to mCPs arising in the canonical model involving the kinetic mixing of a massless dark U(1) gauge field with the Standard Model hypercharge gauge field. We focus on several dominant production mechanisms of mCPs at the LHC across the mass-mixing parameter space of interest to MAPP: Drell-Yan pair production, direct decays of heavy quarkonia and light vector mesons, and single Dalitz decays of pseudoscalar mesons. The 95% confidence level background-free sensitivity of MAPP-1 for mCPs produced at the LHC's Run 3 and the HL-LHC through these mechanisms, along with projected constraints on the minicharged strongly interacting dark matter window, are reported. Our results indicate that MAPP-1 exhibits sensitivity to sizable regions of unconstrained parameter space and can probe effective charges as low as 8 x 10 -4 e and 6 x 10 -4 e for Run 3 and the HL-LHC, respectively.
Address (up) [Kalliokoski, Matti] Univ Helsinki, Helsinki Inst Phys, Helsinki 00014, Finland, Email: matti.kalliokoski@helsinki.fi;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001232666600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6148
Permanent link to this record