|   | 
Details
   web
Records
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title Resolving an ambiguity of Higgs couplings in the FSM, greatly improving thereby the model's predictive range and prospects Type Journal Article
Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 37 Issue 27 Pages 2250167 - 10pp
Keywords Framed standard model; Higgs decays; Yukawa couplings
Abstract We show that, after resolving what was thought to be an ambiguity in the Higgs coupling, the FSM gives, apart from two extra terms (i) and (ii) to be specified below, an effective action in the standard sector which has the same form as the SM action, the two differing only in the values of the mass and mixing parameters of quarks and leptons which the SM takes as Finputs from experiment while the FSM obtains as a result of a fit with a few parameters. Hence, to the accuracy that these two sets of parameters agree in value, and they do to a good extent as shown in earlier work,' the FSM should give the same result as the SM in all the circumstances where the latter has been successfully applied, except for the noted modifications due to (i) and (ii). If so, it would be a big step forward for the FSM. The correction terms are: (i) a mixing between the SM's gamma – Z with a new vector boson in the hidden sector, (ii) a mixing between the standard Higgs with a new scalar boson also in the hidden sector. And these have been shown a few years back to lead to (i') an enhancement of the W mass over the SM value,(2) – and (ii') effects consistent with the g – 2 and some other anomalies,(3) precisely the two deviations from the SM reported by experiments(4,5) recently much in the news.
Address (up) [Bordes, Jose] Univ Valencia, CSIC, Dept Fis Teor, Ctr Mixto, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000884996800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5414
Permanent link to this record
 

 
Author Borsato, M. et al; Zurita, J.; Henry, L.; Jashal, B.K.; Oyanguren, A.
Title Unleashing the full power of LHCb to probe stealth new physics Type Journal Article
Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 85 Issue 2 Pages 024201 - 45pp
Keywords LHCb; stealth physics; BSM physics; hidden sectors; long-lived particles; dark matter
Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.
Address (up) [Borsato, M.] Heidelberg Univ, Phys Inst, Heidelberg, Germany, Email: xabier.cid.vidal@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000762056700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5151
Permanent link to this record
 

 
Author Borys, D. et al; Brzezinski, K.
Title ProTheRaMon-a GATE simulation framework for proton therapy range monitoring using PET imaging Type Journal Article
Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 67 Issue 22 Pages 224002 - 15pp
Keywords proton therapy; GATE; Monte Carlo simulations; J-PET; medical imaging
Abstract Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022).
Address (up) [Borys, Damian] Silesian Tech Univ, Dept Syst Biol & Engn, Gliwice, Poland, Email: damin.borys@polsl.pl
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000885248200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5416
Permanent link to this record
 

 
Author Botella, F.J.; Cornet-Gomez, F.; Miro, C.; Nebot, M.
Title Muon and electron g-2 anomalies in a flavor conserving 2HDM with an oblique view on the CDF M-W value Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 10 Pages 915 - 25pp
Keywords
Abstract We consider a type I or type X two Higgs doublets model with a modified lepton sector. The generalized lepton sector is also flavor conserving but with the new Yukawa couplings completely decoupled from lepton mass proportionality. The model is one loop stable under renormalization group evolution and it allows to reproduce the g – 2 muon anomaly together with the different scenarios one can consider for the electron g – 2 anomaly, related to the Cesium and/or to the Rubidium recoilmeasurements of the fine structure constant. Thorough parameter space analyses are performed to constrain all the model parameters in the different scenarios, either including or not including the recent CDF measurement of the W boson mass. For light new scalars with masses in the 0.2-1.0 TeV range, the muon anomaly receives dominant one loop contributions; it is for heavy new scalars with masses above 1.2 TeV that two loop Barr-Zee diagrams are needed. The electron g-2 anomaly, if any, must always be obtained with the two loop contributions. The final allowed regions are quite sensitive to the assumptions about perturbativity of Yukawa couplings, which influence unexpected observables like the allowed scalar mass ranges. On that respect, intermediate scalar masses, highly constrained by direct LHC searches, are allowed provided that the new lepton Yukawa couplings are fully scrutinized, including values up to 250 GeV. In the framework of a complete model, fully numerically analysed, we show the implications of the recent M-W measurement.
Address (up) [Botella, Francisco J.; Cornet-Gomez, Fernando; Miro, Carlos; Nebot, Miguel] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Spain, Email: Francisco.J.Botella@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000873885900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5395
Permanent link to this record
 

 
Author Botella, F.J.; Branco, G.C.; Rebelo, M.N.; Silva-Marcos, J.I.; Bastos, J.F.
Title Decays of the heavy top and new insights on epsilon(K) in a one-VLQ minimal solution to the CKM unitarity problem Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 4 Pages 360 - 16pp
Keywords
Abstract We propose a minimal extension of the Standard Model where an up-type vector-like quark, denoted T, is introduced and provides a simple solution to the CKM unitarity problem. We adopt the Botella-Chau parametrization in order to extract the 4 x 3 quark mixing matrix which contains the three angles of the 3 x 3 CKM matrix plus three new angles denoted theta(14), theta(24), theta(34). It is assumed that the mixing of T with standard quarks is dominated by theta(14). Imposing a recently derived, and much more restrictive, upper-bound on the New Physics contributions to epsilon(K) , we find, in the limit of exact theta(14) dominance where the other extra angles vanish, that epsilon(NP)(K) is too large. However, if one relaxes the exact theta(14) dominance limit, there exists a parameter region, where one may obtain epsilon(NP)(K) in agreement with experiment while maintaining the novel pattern of T decays with the heavy quark decaying predominantly to the light quarks d and u. We also find a reduction in the decay rate of K-L -> pi(0)nu(nu) over bar.
Address (up) [Botella, Francisco J.] Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Spain, Email: Francisco.J.Botella@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000787321000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5206
Permanent link to this record