|   | 
Details
   web
Records
Author ALEPH, DELPHI, L3 and OPAL Collaborations, LEP Electroweak Working Group (Schael, S. et al); Costa, M.J.; Ferrer, A.; Fuster, J.; Garcia, C.; Oyanguren, A.; Perepelitsa, V.; Salt, J.; Tortosa, P.
Title Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP Type Journal Article
Year 2013 Publication Physics Reports Abbreviated Journal Phys. Rep.
Volume 532 Issue 4 Pages 119-244
Keywords Electron-positron physics; Electroweak interactions; Decays of heavy intermediate gauge bosons; Fermion-antifermion production; Precision measurements at W-pair energies; Tests of the Standard Model; Radiative corrections; Effective coupling constants; Neutral weak current; Z boson; W boson; Top quark; Higgs boson
Abstract Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma – 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019.
Address (down) [Schael, S.] Rhein Westfal TH Aachen, Inst Phys, D-52056 Aachen, Germany
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Medium
Area Expedition Conference
Notes WOS:000328723800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1679
Permanent link to this record
 

 
Author Scandale, W et al; Lari, L.
Title Deflection of high energy protons by multiple volume reflections in a modified multi-strip silicon deflector Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research B Abbreviated Journal Nucl. Instrum. Methods Phys. Res. B
Volume 338 Issue Pages 108-111
Keywords Accelerator; Beam collimation; Crystal; Channeling; Volume reflection
Abstract The effect of multiple volume reflections in one crystal was observed in each of several bent silicon strips for 400 GeV/c protons. This considerably increased the particle deflections. Some particles were also deflected due to channeling in one of the subsequent strips. As a result, the incident beam was strongly spread because of opposite directions of the deflections. A modified multi-strip deflector produced by periodic grooves on the surface of a thick silicon plate was used for these measurements. This technique provides perfect mutual alignment between crystal strips. Such multi-strip deflector may be effective for collider beam halo collimation and a study is planned at the CERN SPS circulating beam.
Address (down) [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583x ISBN Medium
Area Expedition Conference
Notes WOS:000343390400016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1974
Permanent link to this record
 

 
Author Sborlini, G.F.R.; Driencourt-Mangin, F.; Rodrigo, G.
Title Four-dimensional unsubtraction with massive particles Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 162 - 34pp
Keywords NLO Computations
Abstract We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with a scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results presented in this paper are suitable for the application of the method to any multipartonic process.
Address (down) [Sborlini, German F. R.; Driencourt-Mangin, Felix; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: german.sborlini@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000387374000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2853
Permanent link to this record
 

 
Author Sborlini, G.F.R.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Rodrigo, G.
Title Four-dimensional unsubtraction from the loop-tree duality Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 160 - 42pp
Keywords NLO Computations
Abstract We present a new algorithm to construct a purely four dimensional representation of higher-order perturbative corrections to physical cross-sections at next-to-leading order (NLO). The algorithm is based on the loop-tree duality (LTD), and it is implemented by introducing a suitable mapping between the external and loop momenta of the virtual scattering amplitudes, and the external momenta of the real emission corrections. In this way, the sum over degenerate infrared states is performed at integrand level and the cancellation of infrared divergences occurs locally without introducing subtraction counter-terms to deal with soft and final-state collinear singularities. The dual representation of ultraviolet counter-terms is also discussed in detail, in particular for self-energy contributions. The method is first illustrated with the scalar three-point function, before proceeding with the calculation of the physical cross-section for gamma* -> q (q) over bar (g), and its generalisation to multi-leg processes. The extension to next-to-next-to-leading order (NNLO) is briefly commented.
Address (down) [Sborlini, German F. R.; Driencourt-Mangin, Felix; Hernandez-Pinto, Roger J.; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: gfsborlini@df.uba.ar;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382685100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2793
Permanent link to this record
 

 
Author Sborlini, G.F.R.; de Florian, D.; Rodrigo, G.
Title Triple collinear splitting functions at NLO for scattering processes with photons Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 161 - 29pp
Keywords NLO Computations
Abstract We present splitting functions in the triple collinear limit at next-to-leading order. The computation was performed in the context of massless QCD+QED, considering only processes which include at least one photon. Through the comparison of the IR divergent structure of splitting amplitudes with the expected known behavior, we were able to check our results. Besides that we implemented some consistency checks based on symmetry arguments and cross-checked the results among them. Studying photon-started processes, we obtained very compact results.
Address (down) [Sborlini, German F. R.; de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina, Email: gfsborlini@df.uba.ar;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347905900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2082
Permanent link to this record