toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cranmer, K. et al; Sanz, V. url  doi
openurl 
  Title Publishing statistical models: Getting the most out of particle physics experiments Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 12 Issue 1 Pages 037 - 55pp  
  Keywords  
  Abstract The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases – including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits – we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.  
  Address (up) [Cranmer, Kyle; Held, Alexander] NYU, New York, NY 10003 USA, Email: kyle.cranmer@nyu.edu;  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807448000032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5255  
Permanent link to this record
 

 
Author Donini, A.; Enguita-Vileta, V.; Esser, F.; Sanz, V. url  doi
openurl 
  Title Generalising Holographic Superconductors Type Journal Article
  Year 2022 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2022 Issue Pages 1785050 - 19pp  
  Keywords  
  Abstract In this paper we propose a generalised holographic framework to describe superconductors. We first unify the description of s-, p-, and d-wave superconductors in a way that can be easily promoted to higher spin. Using a semianalytical procedure to compute the superconductor properties, we are able to further generalise the geometric description of the hologram beyond the AdS-Schwarzschild Black Hole paradigm and propose a set of higher-dimensional metrics which exhibit the same universal behaviour. We then apply this generalised description to study the properties of the condensate and the scaling of the critical temperature with the parameters of the higher-dimensional theory, which allows us to reproduce existing results in the literature and extend them to include a possible description of the newly observed f-wave superconducting systems.  
  Address (up) [Donini, Andrea; Esser, Fabian] Univ Valencia CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: donini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Hindawi Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000817216300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5277  
Permanent link to this record
 

 
Author Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T. url  doi
openurl 
  Title Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 279 - 78pp  
  Keywords Effective Field Theories; Beyond Standard Model; Higgs Physics  
  Abstract The search for effective field theory deformations of the Standard Model (SM) is a major goal of particle physics that can benefit from a global approach in the framework of the Standard Model Effective Field Theory (SMEFT). For the first time, we include LHC data on top production and differential distributions together with Higgs production and decay rates and Simplified Template Cross-Section (STXS) measurements in a global fit, as well as precision electroweak and diboson measurements from LEP and the LHC, in a global analysis with SMEFT operators of dimension 6 included linearly. We present the constraints on the coefficients of these operators, both individually and when marginalised, in flavour-universal and top-specific scenarios, studying the interplay of these datasets and the correlations they induce in the SMEFT. We then explore the constraints that our linear SMEFT analysis imposes on specific ultra-violet completions of the Standard Model, including those with single additional fields and low-mass stop squarks. We also present a model-independent search for deformations of the SM that contribute to between two and five SMEFT operator coefficients. In no case do we find any significant evidence for physics beyond the SM. Our underlying Fitmaker public code provides a framework for future generalisations of our analysis, including a quadratic treatment of dimension-6 operators.  
  Address (up) [Ellis, John; Mimasu, Ken] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: john.ellis@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000658918100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4857  
Permanent link to this record
 

 
Author Escudero, M.; Rius, N.; Sanz, V. url  doi
openurl 
  Title Sterile neutrino portal to Dark Matter II: exact dark symmetry Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 6 Pages 397 - 11pp  
  Keywords  
  Abstract We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV.  
  Address (up) [Escudero, Miguel; Rius, Nuria] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000403504200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3171  
Permanent link to this record
 

 
Author Escudero, M.; Rius, N.; Sanz, V. url  doi
openurl 
  Title Sterile neutrino portal to Dark Matter I: the U(1)(B-L) case Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 045 - 27pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1)(B-L), broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars – the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies.  
  Address (up) [Escudero, Miguel; Rius, Nuria] Univ Valencia, Dept Fis Teor, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394747600008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3018  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva