toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E.; Gariazzo, S.; Giusarma, E.; Mena, O. url  doi
openurl 
  Title Robustness of cosmological axion mass limits Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 12 Pages 123505 - 12pp  
  Keywords  
  Abstract We present the cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a “piecewise cubic Hermite interpolating polynomial” (PCHIP). When using cosmic microwave background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of sigma(8) and Omega(m) from the 2013 Planck cluster catalog on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favoring a similar to 1 eV axion mass, regardless of the model adopted for the primordial power spectrum. However, in general, such a preference disappears if the sum of the three active neutrino masses is also considered as a free parameter in our numerical analyses, due to the strong correlation between the masses of these two hot thermal relics.  
  Address (up) [Di Valentino, Eleonora] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355623400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2253  
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Gerbino, M.; Giusarma, E.; Mena, O. url  doi
openurl 
  Title Dark radiation and inflationary freedom after Planck 2015 Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 8 Pages 083523 - 28pp  
  Keywords  
  Abstract The simplest inflationary models predict a primordial power spectrum (PPS) of the curvature fluctuations that can be described by a power-law function that is nearly scale invariant. It has been shown, however, that the low-multipole spectrum of the cosmic microwave background anisotropies may hint at the presence of some features in the shape of the scalar PPS, which could deviate from its canonical power-law form. We study the possible degeneracies of this nonstandard PPS with the active neutrino masses, the effective number of relativistic species, and a sterile neutrino or a thermal axion mass. The limits on these additional parameters are less constraining in a model with a nonstandard PPS when including only the temperature autocorrelation spectrum measurements in the data analyses. The inclusion of the polarization spectra noticeably helps in reducing the degeneracies, leading to results that typically show no deviation from the Lambda CDM model with a standard power-law PPS. These findings are robust against changes in the function describing the noncanonical PPS. Albeit current cosmological measurements seem to prefer the simple power-law PPS description, the statistical significance to rule out other possible parametrizations is still very poor. Future cosmological measurements are crucial to improve the present PPS uncertainties.  
  Address (up) [Di Valentino, Eleonora] Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France, Email: valentin@iap.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374960700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2644  
Permanent link to this record
 

 
Author Diamanti, R.; Giusarma, E.; Mena, O.; Archidiacono, M.; Melchiorri, A. url  doi
openurl 
  Title Dark radiation and interacting scenarios Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 6 Pages 063509 - 8pp  
  Keywords  
  Abstract An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of two larger when considering interacting scenarios. If future Cosmic Microwave Background data are analyzed assuming a noninteracting model but the dark radiation and the dark matter sectors interact in nature, the reconstructed values for the effective velocity and for the viscosity parameter will be shifted from their standard 1/3 expectation, namely c(eff)(2) = 0.34(-0.003)(+0.006) and c(vis)(2) = 0.29(-0.001)(+0.002) at 95% C.L. for the future COrE mission data.  
  Address (up) [Diamanti, Roberta] Univ Roma Tre, Dept Phys, I-00146 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315739200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1349  
Permanent link to this record
 

 
Author Escudero, M.; Ramirez, H.; Boubekeur, L.; Giusarma, E.; Mena, O. url  doi
openurl 
  Title The present and future of the most favoured inflationary models after Planck 2015 Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 020 - 21pp  
  Keywords inflation; cosmological parameters from CMBR; CMBR experiments  
  Abstract The value of the tensor-to-scalar ratio r in the region allowed by the latest Planck 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current Planck temperature and polarization data. Rather than focusing only on r, we focus as well on the running of the primordial power spectrum, alpha(s) and the running thereof, beta(s). If future cosmological measurements, as those from the COrE mission, confirm the current best-fit value for beta(s) greater than or similar to 10(-2) as the preferred one, it will be possible to rule-out the most favoured inflationary models.  
  Address (up) [Escudero, Miguel; Ramirez, Hector; Boubekeur, Lotfi; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372467600021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2590  
Permanent link to this record
 

 
Author Gerbino, M.; Freese, K.; Vagnozzi, S.; Lattanzi, M.; Mena, O.; Giusarma, E.; Ho, S. url  doi
openurl 
  Title Impact of neutrino properties on the estimation of inflationary parameters from current and future observations Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 4 Pages 043512 - 22pp  
  Keywords  
  Abstract We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the n(s)/r plane, where n(s) is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties: (i) the total neutrino mass M-i = Sigma(i)m(i) (where the index i = 1, 2, 3 runs over the three neutrino mass eigenstates); (ii) the number of relativistic degrees of freedom N-eff at the time of recombination; and (iii) the neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce < 1 sigma shift of the probability contours in the n(s)/r plane with both current or upcoming data. We find that the choice of neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff on the total neutrino mass M-v,M-min = 0 that accompanies previous works using the degenerate hierarchy does introduce biases in the n(s)/r plane and should be replaced by M-v,M-min = 0.059 eV as required by oscillation data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing over the total neutrino mass M-v and over r can lead to a shift in the mean value of ns of similar to 0.3 sigma toward lower values. However, once baryon acoustic oscillation measurements are included, the standard contours in the n(s)/r plane are basically reproduced. Larger shifts of the contours in the n(s)/r plane (up to 0.8 sigma) arise for nonstandard values of N-eff. We also provide forecasts for the future CMB experiments Cosmic Origins Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino properties, taken into account by a marginalization over M-v, could induce a shift of similar to 0.4 sigma toward lower values in the determination of ns (or a similar to 0.8 sigma shift if one marginalizes over N-eff). Comparison to specific inflationary models is shown. Imperfect knowledge of neutrino properties must be taken into account properly, given the desired precision in determining whether or not inflationary models match the future data.  
  Address (up) [Gerbino, Martina; Freese, Katherine; Vagnozzi, Sunny] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden, Email: martina.gerbino@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427057900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3514  
Permanent link to this record
 

 
Author Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Sterile neutrino models and nonminimal cosmologies Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 8 Pages 083522 - 9pp  
  Keywords  
  Abstract Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.  
  Address (up) [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303118100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 984  
Permanent link to this record
 

 
Author Giusarma, E.; Corsi, M.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O.; Pandolfi, S. url  doi
openurl 
  Title Constraints on massive sterile neutrino species from current and future cosmological data Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 11 Pages 115023 - 10pp  
  Keywords  
  Abstract Sterile massive neutrinos are a natural extension of the standard model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states, as well as on the number of sterile states. The so-called (3 + 2) models, with three sub-eV active massive neutrinos plus two sub-eV massive sterile species, is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, big bang nucleosynthesis bounds compromise the viability of (3 + 2) models. Forecasts from future cosmological data on the active and sterile neutrino parameters are also presented. Independent measurements of the neutrino mass from tritium beta-decay experiments and of the Hubble constant could shed light on sub-eV massive sterile neutrino scenarios.  
  Address (up) [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292039800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 660  
Permanent link to this record
 

 
Author Giusarma, E.; Di Valentino, E.; Lattanzi, M.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Relic neutrinos, thermal axions, and cosmology in early 2014 Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 4 Pages 043507 - 17pp  
  Keywords  
  Abstract We present up-to-date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise baryon acoustic oscillation measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three-active-neutrino scenario, we find Sigma m(nu) < 0.22 eV at 95% C.L. from the combination of cosmic microwave background (CMB), baryon acoustic oscillation, and Hubble Space Telescope measurements of the Hubble constant. A nonzero value for the sum of the three active neutrino masses of similar to 0.3 eV is significantly favored at more than three standard deviations when adding the constraints on s 8 and Om from the Planck cluster catalog on galaxy number counts. This preference for nonzero thermal relic masses disappears almost completely in both the thermal axion and massive sterile neutrino schemes. Extra light species contribute to the effective number of relativistic degrees of freedom, parametrized via N-eff. We found that when the recent detection of B mode polarization from the BICEP2 experiment is considered, an analysis of the combined CMB data in the framework of LCDM + r models gives N-eff = 3.90 +/- 0.42, suggesting the presence of an extra relativistic relic at more than 95% C.L. from CMB-only data.  
  Address (up) [Giusarma, Elena; Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347985100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2075  
Permanent link to this record
 

 
Author Giusarma, E.; Gerbino, M.; Mena, O.; Vagnozzi, S.; Ho, S.; Freese, K. url  doi
openurl 
  Title Improvement of cosmological neutrino mass bounds Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 8 Pages 083522 - 8pp  
  Keywords  
  Abstract The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos Sigma m(nu) < 0.183 eV, among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at similar to 70% C.L., an upper limit on Sigma m(nu) of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to Sigma m(nu) < 0.176 eV. Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on Sigma m(nu) when possible variations in the former two quantities are addressed.  
  Address (up) [Giusarma, Elena; Ho, Shirley] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA, Email: egiusarm@andrew.cmu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387120400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2855  
Permanent link to this record
 

 
Author Giusarma, E.; de Putter, R.; Mena, O. url  doi
openurl 
  Title Testing standard and nonstandard neutrino physics with cosmological data Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 4 Pages 043515 - 9pp  
  Keywords  
  Abstract Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.  
  Address (up) [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314765800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1326  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva