Blennow, M., Fernandez-Martinez, E., Hernandez-Garcia, J., Lopez-Pavon, J., Marcano, X., & Naredo-Tuero, D. (2023). Bounds on lepton non-unitarity and heavy neutrino mixing. J. High Energy Phys., 08(8), 030–41pp.
Abstract: We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.
|
Candela, P. M., De Romeri, V., Melas, P., Papoulias, D. K., & Saoulidou, N. (2024). Up-scattering production of a sterile fermion at DUNE: complementarity with spallation source and direct detection experiments. J. High Energy Phys., 10(10), 032–36pp.
Abstract: We investigate the possible production of a MeV-scale sterile fermion through the up-scattering of neutrinos on nuclei and atomic electrons at different facilities. We consider a phenomenological model that adds a new fermion to the particle content of the Standard Model and we allow for all possible Lorentz-invariant non-derivative interactions (scalar, pseudoscalar, vector, axial-vector and tensor) of neutrinos with electrons and first-generation quarks. We first explore the sensitivity of the DUNE experiment to this scenario, by simulating elastic neutrino-electron scattering events in the near detector. We consider both options of a standard and a tau-optimized neutrino beams, and investigate the impact of a mobile detector that can be moved off-axis with respect to the beam. Next, we infer constraints on the typical coupling, new fermion and mediator masses from elastic neutrino-electron scattering events induced by solar neutrinos in two current dark matter direct detection experiments, XENONnT and LZ. Under the assumption that the new mediators couple also to first-generation quarks, we further set constraints on the up-scattering production of the sterile fermion using coherent elastic neutrino-nucleus scattering data from the COHERENT experiment. Moreover, we set additional constraints assuming that the sterile fermion may decay within the detector. We finally compare our results and discuss how these facilities are sensitive to different regions of the relevant parameter space due to kinematics arguments and can hence provide complementary information on the up-scattering production of a sterile fermion.
|
Chattaraj, A., Majumdar, A., Papoulias, D. K., & Srivastava, R. (2025). Probing conventional and new physics at the ESS with coherent elastic neutrino-nucleus scattering. J. High Energy Phys., 05(5), 064–49pp.
Abstract: We explore the potential of the European Spallation Source (ESS) in probing physics within and beyond the Standard Model (SM), based on future measurements of coherent elastic neutrino-nucleus scattering (CE nu NS). We consider two SM physics cases, namely the weak mixing angle and the nuclear radius. Regarding physics beyond the SM, we focus on neutrino generalized interactions (NGIs) and on various aspects of sterile neutrino and sterile neutral lepton phenomenology. For this, we explore the violation of lepton unitarity, active-sterile oscillations as well as interesting upscattering channels such as the sterile dipole portal and the production of sterile neutral leptons via NGIs. The projected ESS sensitivities are estimated by performing a statistical analysis considering the various CE nu NS detectors and expected backgrounds. We find that the enhanced statistics achievable in view of the highly intense ESS neutrino beam, will offer a drastic improvement in the current constraints obtained from existing CE nu NS measurements. Finally, we discuss how the ESS has the potential to provide the leading CE nu NS-based constraints, complementing also further experimental probes and astrophysical observations.
|
Coito, L., Faubel, C., Herrero-Garcia, J., Santamaria, A., & Titov, A. (2022). Sterile neutrino portals to Majorana dark matter: effective operators and UV completions. J. High Energy Phys., 08(8), 085–36pp.
Abstract: Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.
|
Coloma, P., López-Pavón, J., Molina-Bueno, L., & Urrea, S. (2024). New physics searches using ProtoDUNE and the CERN SPS accelerator. J. High Energy Phys., 01(1), 134–18pp.
Abstract: The exquisite capabilities of liquid Argon Time Projection Chambers make them ideal to search for weakly interacting particles in Beyond the Standard Model scenarios. Given their location at CERN the ProtoDUNE detectors may be exposed to a flux of such particles, produced in the collisions of 400 GeV protons (extracted from the Super Proton Synchrotron accelerator) on a target. Here we point out the interesting possibilities that such a setup offers to search for both long-lived unstable particles (Heavy Neutral Leptons, axion-like particles, etc) and stable particles (e.g. light dark matter, or millicharged particles). Our results show that, under conservative assumptions regarding the expected luminosity, this setup has the potential to improve over present bounds for some of the scenarios considered. This could be done within a short timescale, using facilities that are already in place at CERN, and without interfering with the experimental program in the North Area at CERN.
|