|   | 
Details
   web
Records
Author Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Mena, O.; Melchiorri, A.; Silk, J.
Title Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 752 Issue Pages 182-185
Keywords
Abstract Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterized via N-eff. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measurements. In the mixed hot dark matter scenario explored here, we find the tightest and more robust constraint to date on the sum of the three active neutrino masses, Sigma m nu < 0.136eV at 95% CL, as it is obtained in the very well-known linear perturbation regime. The Planck Sunyaev-Zeldovich cluster number count data further tightens this bound, providing a 95% CL upper limit of Sigma m nu < 0.126 eV in this very same mixed hot dark matter model, a value which is very close to the expectations in the inverted hierarchical neutrino mass scenario. Using this same combination of data sets we find the most stringent bound to date on the thermal axion mass, m(a) < 0.529 eV at 95% CL.
Address (up) [Di Valentino, Eleonora; Silk, Joseph] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France, Email: elena.giusarma@roma1.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000368026000026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2524
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.
Title Can interacting dark energy solve the H-0 tension? Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 4 Pages 043503 - 11pp
Keywords
Abstract The answer is yes. We indeed find that interacting dark energy can alleviate the current tension on the value of the Hubble constant H-0 between the cosmic microwave background anisotropies constraints obtained from the Planck satellite and the recent direct measurements reported by Riess et al. 2016. The combination of these two data sets points toward a nonzero dark matter-dark energy coupling. at more than two standard deviations, with xi = -0.26(-0.12)(+0.16) at 95% C.L., i.e. with a moderate evidence for interacting dark energy with an odds ratio of 6:1 respect to a non interacting cosmological constant. However the H-0 tension is better solved when the equation of state of the interacting dark energy component is allowed to freely vary, with a phantomlike equation of state w = -1.185 +/- 0.064 (at 68% C.L.), ruling out the pure cosmological constant case, w = -1, again at more than two standard deviations. When Planck data are combined with external datasets, as BAO, JLA Supernovae Ia luminosity distances, cosmic shear or lensing data, we find perfect consistency with the cosmological constant scenario and no compelling evidence for a dark matter-dark energy coupling.
Address (up) [Di Valentino, Eleonora] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France, Email: eleonora.di_valentino@iap.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000427529900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3517
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giusarma, E.; Mena, O.
Title Robustness of cosmological axion mass limits Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 12 Pages 123505 - 12pp
Keywords
Abstract We present the cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a “piecewise cubic Hermite interpolating polynomial” (PCHIP). When using cosmic microwave background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of sigma(8) and Omega(m) from the 2013 Planck cluster catalog on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favoring a similar to 1 eV axion mass, regardless of the model adopted for the primordial power spectrum. However, in general, such a preference disappears if the sum of the three active neutrino masses is also considered as a free parameter in our numerical analyses, due to the strong correlation between the masses of these two hot thermal relics.
Address (up) [Di Valentino, Eleonora] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355623400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2253
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Gerbino, M.; Giusarma, E.; Mena, O.
Title Dark radiation and inflationary freedom after Planck 2015 Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 8 Pages 083523 - 28pp
Keywords
Abstract The simplest inflationary models predict a primordial power spectrum (PPS) of the curvature fluctuations that can be described by a power-law function that is nearly scale invariant. It has been shown, however, that the low-multipole spectrum of the cosmic microwave background anisotropies may hint at the presence of some features in the shape of the scalar PPS, which could deviate from its canonical power-law form. We study the possible degeneracies of this nonstandard PPS with the active neutrino masses, the effective number of relativistic species, and a sterile neutrino or a thermal axion mass. The limits on these additional parameters are less constraining in a model with a nonstandard PPS when including only the temperature autocorrelation spectrum measurements in the data analyses. The inclusion of the polarization spectra noticeably helps in reducing the degeneracies, leading to results that typically show no deviation from the Lambda CDM model with a standard power-law PPS. These findings are robust against changes in the function describing the noncanonical PPS. Albeit current cosmological measurements seem to prefer the simple power-law PPS description, the statistical significance to rule out other possible parametrizations is still very poor. Future cosmological measurements are crucial to improve the present PPS uncertainties.
Address (up) [Di Valentino, Eleonora] Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France, Email: valentin@iap.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000374960700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2644
Permanent link to this record
 

 
Author Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.Q.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J.
Title In the realm of the Hubble tension – a review of solutions Type Journal Article
Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 38 Issue 15 Pages 153001 - 110pp
Keywords cosmological parameters; cosmology; dark energy; Hubble constant
Abstract The simplest ΛCDM model provides a good fit to a large span of cosmological data but harbors large areas of phenomenology and ignorance. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the 4 sigma to 6 sigma disagreement between predictions of the Hubble constant, H (0), made by the early time probes in concert with the 'vanilla' ΛCDM cosmological model, and a number of late time, model-independent determinations of H (0) from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demands a hypothesis with enough rigor to explain multiple observations-whether these invoke new physics, unexpected large-scale structures or multiple, unrelated errors. A thorough review of the problem including a discussion of recent Hubble constant estimates and a summary of the proposed theoretical solutions is presented here. We include more than 1000 references, indicating that the interest in this area has grown considerably just during the last few years. We classify the many proposals to resolve the tension in these categories: early dark energy, late dark energy, dark energy models with 6 degrees of freedom and their extensions, models with extra relativistic degrees of freedom, models with extra interactions, unified cosmologies, modified gravity, inflationary models, modified recombination history, physics of the critical phenomena, and alternative proposals. Some are formally successful, improving the fit to the data in light of their additional degrees of freedom, restoring agreement within 1-2 sigma between Planck 2018, using the cosmic microwave background power spectra data, baryon acoustic oscillations, Pantheon SN data, and R20, the latest SH0ES Team Riess, et al (2021 Astrophys. J. 908 L6) measurement of the Hubble constant (H (0) = 73.2 +/- 1.3 km s(-1) Mpc(-1) at 68% confidence level). However, there are many more unsuccessful models which leave the discrepancy well above the 3 sigma disagreement level. In many cases, reduced tension comes not simply from a change in the value of H (0) but also due to an increase in its uncertainty due to degeneracy with additional physics, complicating the picture and pointing to the need for additional probes. While no specific proposal makes a strong case for being highly likely or far better than all others, solutions involving early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity provide the best options until a better alternative comes along.
Address (up) [Di Valentino, Eleonora] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000672148200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4931
Permanent link to this record