toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Araujo Filho, A.A.; Nascimento, J.R.; Petrov, A.Y.; Porfírio, P.J. url  doi
openurl 
  Title Vacuum solution within a metric-affine bumblebee gravity Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 8 Pages 085010 - 13pp  
  Keywords  
  Abstract We consider a metric-affine extension to the gravitational sector of the Standard Model extension for the Lorentz-violating coefficients u and s(mu nu). The general results, which are applied to a specific model called metric-affine bumblebee gravity, are obtained. A Schwarzschild-like solution, incorporating effects of the Lorentz symmetry breaking through the coefficient X = xi b(2), is found. Furthermore, a complete study of the geodesic trajectories of particles is accomplished in this background, emphasizing the departure from general relativity. We also compute the advance of Mercury's perihelion and the deflection of light within the context of the weak-field approximation, and we verify that there exist two new contributions ascribed to the Lorentz symmetry breaking. As a phenomenological application, we compare our theoretical results with observational data in order to estimate the coefficient X.  
  Address (up) [Araujo Filho, A. A.; Nascimento, J. R.; Petrov, A. Yu.; Porfirio, P. J.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151350300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5932  
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Reis, J.A.A.S.; Ghosh, S. url  doi
openurl 
  Title Quantum gases on a torus Type Journal Article
  Year 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 20 Issue 10 Pages 2350178 - 19pp  
  Keywords Thermodynamic properties; non-Cartesian geometries; grand canonical ensemble; noninteracting and interacting quantum gases; spinless; bosons and fermion particles  
  Abstract This paper is aimed at studying the thermodynamic properties of quantum gases confined to a torus. To do that, we consider noninteracting gases within the grand canonical ensemble formalism. In this context, fermions and bosons are taken into account and the calculations are properly provided in both analytical and numerical manners. In particular, the system turns out to be sensitive to the topological parameter under consideration: the winding number. Furthermore, we also derive a model in order to take into account interacting quantum gases. To corroborate our results, we implement such a method for two different scenarios: a ring and a torus.  
  Address (up) [Araujo Filho, A. A.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988814200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5553  
Permanent link to this record
 

 
Author Araujo Filho, A.A. url  doi
openurl 
  Title Thermodynamics of massless particles in curved spacetime Type Journal Article
  Year 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 12 Issue 13 Pages 2350226 - 40pp  
  Keywords Einstein-aether; thermodynamic properties; curved spacetime  
  Abstract This work is devoted to study the behavior of massless particles within the context of curved spacetime. In essence, we investigate the consequences of the scale factor C(?) of the Friedmann-Robertson-Walker metric in the Einstein-aether formalism to study photon-like particles. To do so, we consider the system within the canonical ensemble formalism in order to derive the following thermodynamic state quantities: spectral radiance, Helmholtz free energy, pressure, entropy, mean energy and the heat capacity. Moreover, the correction to the Stefan-Boltzmann law and the equation of states are also provided. Particularly, we separate our study within three distinct cases, i.e. s = 0, p = 0; s = 1, p = 1; s = 2, p = 1. In the first one, the results are derived numerically. Nevertheless, for the rest of the cases, all the calculations are accomplished analytically showing explicitly the dependence of the scale factor C(?) and the Riemann zeta function ?(s). Furthermore, our analyses are accomplished in general taking into account three different regimes of temperature of the universe, i.e. the inflationary era (T = 10(13)GeV), the electroweak epoch (T = 10(3)GeV) and the cosmic microwave background (T = 10(-13)GeV).  
  Address (up) [Araujo Filho, A. A.] Univ Fed Cearra UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001048378900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5613  
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Furtado, J.; Hassanabadi, H.; Reis, J.A.A.S. url  doi
openurl 
  Title Thermal analysis of photon-like particles in rainbow gravity Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 42 Issue Pages 101310 - 8pp  
  Keywords Rainbow gravity; Thermodynamics; Bounds  
  Abstract This work is devoted to study the thermodynamic behavior of photon-like particles within the rainbow gravity formalism. To to do this, we chose two particular ansatzs to accomplish our calculations. First, we consider a dispersion relation which avoids UV divergences, getting a positive effective cosmological constant. We provide numerical analysis for the thermodynamic functions of the system and bounds are estimated. Furthermore, a phase transition is also expected for this model. Second, we consider a dispersion relation employed in the context of Gamma Ray Bursts. Remarkably, for this latter case, the thermodynamic properties are calculated in an analytical manner and they turn out to depend on the harmonic series Hn, gamma & UGamma; (z), polygamma & psi;n(z) and zeta Riemann functions & zeta;(z).  
  Address (up) [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor & IFIC, Ctr Mixto Univ Valencia, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001062674000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5667  
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Heidari, N.; Kriz, J.; Zare, S. url  doi
openurl 
  Title Gravitational traces of bumblebee gravity in metric-affine formalism Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 5 Pages 055003 - 21pp  
  Keywords bumblebee gravity; metric affine formalism; shadows  
  Abstract This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.  
  Address (up) [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001152994800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5925  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva