Szilner, S. et al, & Gadea, A. (2011). Interplay between single-particle and collective excitations in argon isotopes populated by transfer reactions. Phys. Rev. C, 84(1), 014325–7pp.
Abstract: New gamma transitions have been identified in argon isotopes in (40)Ar + (208)Pb multiple transfer reactions by exploiting, in a fragment-gamma measurement, the new generation of magnetic spectrometers based on trajectory reconstruction coupled to large gamma arrays. The coupling of single-particle degrees of freedom to nuclear vibration quanta was discussed. The interpretation of the newly observed states within a particle-phonon coupling picture was used to consistently follow, via their excitation energies, the evolution of collectivity in odd Ar isotopes. The proposed level schemes are supported by the results of sd-pf shell-model calculations, which have been also employed to evaluate the strength functions of the populated states.
|
Szilner, S. et al, & Jurado-Gomez, M. (2024). Quest for Cooper Pair Transfer in Heavy-Ion Reactions: The 206 Pb+118 Sn Case. Phys. Rev. Lett., 133(20), 202501–7pp.
Abstract: In this Letter we report on effects of nucleon-nucleon correlations probed in nucleon transfer reactions with heavy ions. We measured with high efficiency and resolution a complete set of observables for neutron transfer channels in the 206Pb & thorn; 118Sn system employing a large solid angle magnetic spectrometer, which allowed us to study a wide range of internuclear distances via a detailed excitation function. The coupled channel theory, based on an independent particle transfer mechanism, follows the experimental transfer probabilities for one- and two-neutron pick-up and stripping channels. The experimental two-neutron transfer cross sections indicate that in reactions between pair-vibrational (closed shell) and pair-rotational (open shell) nuclei, correlations manifest via pair-addition and pair-removal modes, which constitute one of the elementary modes of excitations in nuclei.
|
Perez-Vidal, R. M., Galtarossa, F., Mijatovic, T., Szilner, S., Zanon, I., Brugnara, D., et al. (2023). Nuclear structure advancements with multi-nucleon transfer reactions. Eur. Phys. J. A, 59(5), 114–15pp.
Abstract: Multi-Nucleon Transfer (MNT) reactions have been used for decades as a reaction mechanism, in order to populate excited states in nuclei far from stability and to perform nuclear structure studies. Nevertheless, the development of set-ups involving high acceptance tracking magnetic spectrometers (mainly existing in Europe), coupled with the Advanced GAmma Tracking Array (AGATA) opens new possibilities, especially if they are used in conjunction with high-intensity stable beams or ISOL RIBs. In this article, we will discuss the capabilities of such set-ups aiming at different goals, including complete information in high-resolution spectroscopy as well as lifetime measurements.
|
Pajtler, M. V., Szilner, S., Corradi, L., de Angelis, G., Fioretto, E., Gadea, A., et al. (2015). Selective properties of neutron transfer reactions in the Zr-90+Pb-208 system for the population of excited states in zirconium isotopes. Nucl. Phys. A, 941, 273–292.
Abstract: Nuclei produced via multineutron transfer channels have been studied in Zr-90 + Pb-208 close to the Coulomb barrier energy in a fragment-gamma coincident measurement employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. The selective properties of the reaction mechanism have been discussed in terms of states and their strength excited in the neutron transfer channels leading to Zr89-94 isotopes. A strong population of yrast states, with energies up to similar to 7.5 MeV has been observed.
|
Montanari, D., Farnea, E., Leoni, S., Pollarolo, G., Corradi, L., Benzoni, G., et al. (2011). Response function of the magnetic spectrometer PRISMA. Eur. Phys. J. A, 47(1), 4–7pp.
Abstract: The response function of the magnetic spectrometer PRISMA is studied via a Monte Carlo simulation that employs a ray tracing code to determine the trajectories of individual rays through the electromagnetic fields. The calculated response is tested on angular and energy distributions provided by theoretical calculations for the Ca-48 + Ni-64 multinucleon transfer reaction and applied to the corresponding experimental data.
|