Abbas, G., Abyaneh, M. Z., Biswas, A., Gupta, S., Patra, M., Rajasekaran, G., et al. (2016). High scale mixing relations as a natural explanation for large neutrino mixing. Int. J. Mod. Phys. A, 31(17), 1650095–47pp.
Abstract: The origin of small mixing among the quarks and a large mixing among the neutrinos has been an open question in particle physics. In order to answer this question, we postulate general relations among the quarks and the leptonic mixing angles at a high scale, which could be the scale of Grand Unified Theories. The central idea of these relations is that the quark and the leptonic mixing angles can be unified at some high scale either due to some quark lepton symmetry or some other underlying mechanism and as a consequence, the mixing angles of the leptonic sector are proportional to that of the quark sector. We investigate the phenomenology of the possible relations where the leptonic mixing angles are proportional to the quark mixing angles at the unification scale by taking into account the latest experimental constraints from the neutrino sector. These relations are able to explain the pattern of leptonic mixing at the low scale and thereby hint that these relations could be possible signatures of a quark lepton symmetry or some other underlying quark lepton mixing unification mechanism at some high scale linked to Grand Unified Theories.
|
Abbas, G., Zahiri-Abyaneh, M., & Srivastava, R. (2017). Precise predictions for Dirac neutrino mixing. Phys. Rev. D, 95(7), 075005–7pp.
Abstract: The neutrino mixing parameters are thoroughly studied using renormalization- group evolution of Dirac neutrinos with recently proposed parametrization of the neutrino mixing angles referred to as “high-scale mixing relations.” The correlations among all neutrino mixing and CP violating observables are investigated. The predictions for the neutrino mixing angle. 23 are precise, and could be easily tested by ongoing and future experiments. We observe that the high-scale mixing unification hypothesis is incompatible with Dirac neutrinos due to updated experimental data.
|
Addazi, A., Marciano, A., Morais, A. P., Pasechnik, R., Srivastava, R., & Valle, J. W. F. (2020). Gravitational footprints of massive neutrinos and lepton number breaking. Phys. Lett. B, 807, 135577–8pp.
Abstract: We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both “high-scale” as well as “low-scale” variants, with either explicit or spontaneously broken lepton number symmetry U(1)(L), in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken U(1)(L), and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detestability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken U(1)(L), at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.
|
Addazi, A., Ricciardi, G., Scarlatella, S., Srivastava, R., & Valle, J. W. F. (2022). Interpreting B anomalies within an extended 331 gauge theory. Phys. Rev. D, 106(3), 035030–14pp.
Abstract: In light of the recent R-K(*) data on neutral current flavor anomalies in B -> K-(*())l(+)l(-) decays, we reexamine their quantitative interpretation in terms of an extended 331 gauge theory framework. We achieve this by adding two extra lepton species with novel 331 charges, while ensuring that the model remains anomaly-free. In contrast to the canonical 331 models, the gauge charges of the first and second lepton families differ from each other, allowing lepton-flavor universality violation. We further expand the model by adding the neutral fermions required to provide an adequate description for small neutrino masses.
|
Barreiros, D. M., Joaquim, F. R., Srivastava, R., & Valle, J. W. F. (2021). Minimal scoto-seesaw mechanism with spontaneous CP violation. J. High Energy Phys., 04(4), 249–21pp.
Abstract: We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.
|
Batra, A., Camara, H. B., Joaquim, F. R., Srivastava, R., & Valle, J. W. F. (2024). Axion Paradigm with Color-Mediated Neutrino Masses. Phys. Rev. Lett., 132(5), 051801–7pp.
Abstract: We propose a generalized Kim-Shifman-Vainshtein-Zakharov-type axion framework in which colored fermions and scalars act as two -loop Majorana neutrino -mass mediators. The global Peccei-Quinn symmetry under which exotic fermions are charged solves the strong CP problem. Within our general proposal, various setups can be distinguished by probing the axion-to-photon coupling at helioscopes and haloscopes. We also comment on axion dark -matter production in the early Universe.
|
Batra, A., Câmara, H. B., Joaquim, F. R., Nath, N., Srivastava, R., & Valle, J. W. F. (2025). Axion framework with color-mediated Dirac neutrino masses. Phys. Lett. B, 868, 139629–11pp.
Abstract: We propose a KSVZ-type axion framework in which vector-like quarks (VLQ) and colored scalars generate Dirac neutrino masses radiatively. The global Peccei-Quinn symmetry (under which the exotic fermions are charged) addresses the strong CP problem and ensures the Dirac nature of neutrinos. The axion also accounts for the observed cosmological dark matter. We systematically explore all viable VLQ representations. Depending on the specific scenario, the framework predicts distinct axion-to-photon couplings, testable through haloscope and helioscope experiments, as well as potentially significant flavor-violating quark-axion interactions.
|
Batra, A., Bharadwaj, P., Mandal, S., Srivastava, R., & Valle, J. W. F. (2023). Phenomenology of the simplest linear seesaw mechanism. J. High Energy Phys., 07(7), 221–48pp.
Abstract: The linear seesaw mechanism provides a simple way to generate neutrino masses. In addition to Standard Model particles, it includes quasi-Dirac leptons as neutrino mass mediators, and a leptophilic scalar doublet seeding small neutrino masses. Here we review its associated physics, including restrictions from theory and phenomenology. The model yields potentially detectable μ-> e gamma rates as well as distinctive signatures in the production and decay of heavy neutrinos ( N-i) and the charged Higgs boson (H-+/-) arising from the second scalar doublet. We have found that production processes such as e(+) e(-) -> NN, e- gamma -> NH- and e(+) e(-) -> H (+) H- followed by the decay chain H-+/--> l(+/-) (i) N, N -> l`(+/-) (j) W (-/+) leads to striking lepton number violation signatures at high energies which may probe the Majorana nature of neutrinos.
|
Batra, A., Bharadwaj, P., Mandal, S., Srivastava, R., & Valle, J. W. F. (2025). Large lepton number violation at colliders: Predictions from the minimal linear seesaw mechanism. Phys. Lett. B, 860, 139204–11pp.
Abstract: Small neutrino masses can be sourced by a tiny vacuum expectation value of a leptophilic Higgs doublet, and mediated by Quasi-Dirac heavy neutrinos. In such simplest linear seesaw picture the neutrino mass mediators can be accessible to colliders. We describe novel charged Higgs and heavy neutrino production mechanisms that can be sizeable at + – , -, , or muon colliders and discuss some of the associated signatures. The oscillation length of the heavy neutrino mediators is directly related to the light neutrino mass ordering. Moreover, lepton number violation can be large despite the smallness of neutrino masses, and may shed light on the Majorana nature of neutrinos and the significance of basic symmetries in weak interaction.
|
Batra, A., Bharadwaj, P., Mandal, S., Srivastava, R., & Valle, J. W. F. (2022). W-mass anomaly in the simplest linear seesaw mechanism. Phys. Lett. B, 834, 137408–12pp.
Abstract: The simplest linear seesaw mechanism can accommodate the new CDF-II W mass measurement. In addition to Standard Model particles, the model includes quasi-Dirac leptons, and a second, leptophilic, scalar doublet seeding small neutrino masses. Our proposal is consistent with electroweak precision tests, neutrino physics, rare decays and collider restrictions, requiring a new charged scalar below a few TeV, split in mass from the new degenerate scalar and pseudoscalar neutral Higgs bosons.
|