|   | 
Details
   web
Records
Author Holz, S.; Plenter, J.; Xiao, C.W.; Dato, T.; Hanhart, C.; Kubis, B.; Meissner, U.G.; Wirzba, A.
Title Towards an improved understanding of eta -> gamma*gamma * Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 11 Pages 1002 - 15pp
Keywords
Abstract (down) We argue that high-quality data on the reaction e(+)e(-) -> pi(+) pi(-) eta will allow one to determine the doubly-virtual form factor eta -> gamma*gamma* in a model-independent way with controlled accuracy. This is an important step towards a reliable evaluation of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of themuon. When analyzing the existing data for e(+) e(-) -> pi(+) pi(-) eta for total energies squared k(2) > 1GeV(2), we demonstrate that the effect of the a(2) meson provides a natural breaking mechanism for the commonly employed factorization ansatz in the doubly-virtual form factor F-eta gamma*gamma* (q(2), k(2)). However, better data are needed to draw firm conclusions.
Address [Holz, S.; Plenter, J.; Dato, T.; Kubis, B.; Meissner, U-G] Univ Bonn, Helmholtz Inst Strahlen & Kemphys Theorie, D-53115 Bonn, Germany, Email: holz@hiskp.uni-bonn.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000718113500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5024
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P.
Title Coupled-channel meson-meson scattering in the diabatic framework Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 7 Pages 074025 - 16pp
Keywords
Abstract (down) We apply the diabatic framework, a QCD-based formalism for the unified study of quarkoniumlike systems in terms of heavy quark-antiquark and open-flavor meson-meson components, to the description of coupled-channel meson-meson scattering. For this purpose, we first introduce a numerical scheme to find the solutions of the diabatic Schrodinger equation for energies in the continuum, then we derive a general formula for calculating the meson-meson scattering amplitudes from these solutions. We thus obtain a completely nonperturbative procedure for the calculation of open-flavor meson-meson scattering cross sections from the diabatic potential, which is directly connected to lattice QCD calculations. A comprehensive analysis of various elastic cross sections for open-charm and open-bottom meson-meson pairs is performed in a wide range of the center-of-mass energies. The relevant structures are identified, showing a spectrum of quasiconventional and unconventional quarkoniumlike states. In addition to the customary Breit-Wigner peaks, we obtain nontrivial structures such as threshold cusps and minimums. Finally, our results are compared with existing data and with results from our previous bound-state-based analysis, finding full compatibility with both.
Address [Bruschini, R.; Gonzalez, P.] Univ Valencia CSIC, Unidad Teor, Inst Fis Corpusc, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000753716600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5120
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P.
Title Diabatic description of bottomoniumlike mesons Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 11 Pages 114016 - 13pp
Keywords
Abstract (down) We apply the diabatic approach, specially suited for a QCD based study of conventional (quark-antiquark) and unconventional (quark-antiquark + meson-meson) meson states, to the description of hidden-bottom mesons. A spectral analysis of the I = 0, J(++) and 1(--) resonances with masses up to about 10.8 GeV is carried out. Masses and widths of all the experimentally known resonances, including conventional and unconventional states, can be well reproduced. In particular, we predict a significant B (B) over bar* component in Upsilon(10580). We also predict the existence of a not yet discovered unconventional 1(++) narrow state, with a significant B-s(B) over bar (s)* content making it to decay into Upsilon(1S)phi, whose experimental discovery would provide definite support to our theoretical analysis.
Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular, Unidad Teor, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000663019400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4860
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P.
Title Strong decays of the lowest bottomonium hybrid within an extended Born-Oppenheimer framework Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 1 Pages 74 - 9pp
Keywords
Abstract (down) We analyze the decays of the theoretically predicted lowest bottomonium hybrid H(1P) to open bottom two-meson states. We do it by embedding a quark pair creation model into the Born-Oppenheimer framework which allows for a unified, QCD-motivated description of bottomonium hybrids as well as bottomonium. A new 1P1 decay model for H(1P) comes out. The same analysis applied to bottomonium leads naturally to the well-known 3 P0 decay model. We show that H(1P) and the theoretically predicted bottomonium state Upsilon (5S), whose calculated masses are close to each other, have very different widths for such decays. A comparison with data from Upsilon (10860), an experimental resonance whose mass is similar to that of Upsilon (5S) and H(1P), is carried out. Neither a Upsilon (5S) nor a H(1P) assignment can explain the measured decay widths. However, a Upsilon (5S)-H(1P) mixing may give account of them supporting previous analyses of dipion decays of Upsilon (10860) and suggesting a possible experimental evidence of H(1P).
Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular, Unidad Teor, Valencia 46980, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000612840500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4695
Permanent link to this record
 

 
Author Wang, E.; Liang, W.H.; Oset, E.
Title Analysis of the e(+)e(-) -> J/psi D(D)over-bar reaction close to the threshold concerning claims of a chi(c0)(2P) state Type Journal Article
Year 2021 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 57 Issue 1 Pages 38 - 9pp
Keywords
Abstract (down) We analyze the D (D) over bar mass distribution from a recent Belle experiment on the e(+)e(-) -> J/.D (D) over bar reaction, and show that the mass distribution divided by phase sp(c)e does not have a clear peak above the D (D) over bar threshold that justifies the experimental claim of chi(c0)(2P) state from those data. Then we use a unitary formalismwith coupled channels D+ D-, D-0 (D) over bar (0), D-s(D) over bar (s), and eta eta, with some of the interactions taken from a theoretical model, and use the data to fix other parameters. We then show that, given the poor quality of the data, we can get different fits leading to very different D (D) over bar amplitudes, some of them supporting a D (D) over bar bound state and others not. The main conclusion is that the claim for the chi(c0)(2P) state, already included in the PDG, is premature, but refined data can provide very valuable information on the D (D) over bar scattering amplitude. As side effects, we warn about the use of a Breit-Wigner amplitude parameterization close to threshold, and show that the D-s(D) over bar (s) channel plays an important role in this reaction.
Address [Wang, En; Liang, Wei-Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: wangen@zzu.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000613544900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4732
Permanent link to this record