|   | 
Details
   web
Records
Author Kpatcha, E.; Lopez-Fogliani, D.E.; Munoz, C.; Ruiz de Austri, R.
Title Impact of Higgs physics on the parameter space of the μnu SSM Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 4 Pages 336 - 43pp
Keywords
Abstract (down) Given the increasing number of experimental data, together with the precise measurement of the properties of the Higgs boson at the LHC, the parameter space of supersymmetric models starts to be constrained. We carry out a detailed analysis of this issue in the framework of the μnu SSM. In this model, three families of right-handed neutrino superfields are present in order to solve the μproblem and simultaneously reproduce neutrino physics. The new couplings and sneutrino vacuum expectation values in the μnu SSM induce new mixing of states, and, in particular, the three right sneutrinos can be substantially mixed with the neutral Higgses. After diagonalization, the masses of the corresponding three singlet-like eigenstates can be smaller or larger than the mass of the Higgs, or even degenerated with it. We analyze whether these situations are still compatible with the experimental results. To address it we scan the parameter space of the Higgs sector of the model. In particular, we sample the μnu SSM using a powerful likelihood data-driven method, paying special attention to satisfy the constraints coming from Higgs sector measurements/limits (using HiggsBounds and HiggsSignals), as well as a class of flavor observables such as B and μdecays, while muon g-2 is briefly discussed. We find that large regions of the parameter space of the μnu SSM are viable, containing an interesting phenomenology that could be probed at the LHC.
Address [Kpatcha, Essodjolo; Munoz, Carlos] Univ Autonoma Madrid UAM, Dept Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: kpatcha.essodjolo@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000529962200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4386
Permanent link to this record
 

 
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Pieri, L.; Ruiz de Austri, R.; Trotta, R.
Title Complementarity of indirect and accelerator dark matter searches Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 5 Pages 055014 - 10pp
Keywords
Abstract (down) Even if supersymmetric particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the dark matter (DM) in the Universe using LHC data alone. We study the complementarity of LHC and DM indirect searches, working out explicitly the reconstruction of the DM properties for a specific benchmark model in the coannihilation region of a 24-parameters supersymmetric model. Combining mock high-luminosity LHC data with presentday null searches for gamma rays from dwarf galaxies with the Fermi Large Area Telescope, we show that current Fermi Large Area Telescope limits already have the capability of ruling out a spurious wino-like solution which would survive using LHC data only, thus leading to the correct identification of the cosmological solution. We also demonstrate that upcoming Planck constraints on the reionization history will have a similar constraining power and discuss the impact of a possible detection of gamma rays from DM annihilation in the Draco dwarf galaxy with a Cherenkov-Telescope-Array-like experiment. Our results indicate that indirect searches can be strongly complementary to the LHC in identifying the DM particles, even when astrophysical uncertainties are taken into account.
Address [Bertone, G.] Univ Amsterdam, GRAPPA Inst, NL-1090 GL Amsterdam, Netherlands
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000301647300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 948
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title Search for magnetic monopoles produced via the Schwinger mechanism Type Journal Article
Year 2022 Publication Nature Abbreviated Journal Nature
Volume 602 Issue 7895 Pages 63-67
Keywords
Abstract (down) Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism(1). By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist(2). Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model(3-7) but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size(8,9) and strong coupling to photons(2,10). Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe(11). It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 x 10(9), of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000750429600019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5191
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P.
Title Impact of QCD uncertainties on antiproton spectra from dark-matter annihilation Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 068 - 15pp
Keywords cosmic ray theory; dark matter simulations; cosmic ray experiments; Frequentist statistics
Abstract (down) Dark-matter particles that annihilate or decay can undergo complex sequences of processes, including strong and electromagnetic radiation, hadronisation, and hadron de-cays, before particles that are stable on astrophysical time scales are produced. Antiprotons produced in this way may leave footprints in experiments such as AMS-02. Several groups have reported an excess of events in the antiproton flux in the rigidity range of 10-20 GV. However, the theoretical modeling of baryon production is not straightforward and relies in part on phenomenological models in Monte Carlo event generators. In this work, we assess the impact of QCD uncertainties on the spectra of antiprotons from dark-matter annihila-tion. As a proof-of-principle, we show that for a two-parameter model that depends only on the thermally-averaged annihilation cross section ((o -v)) and the dark-matter mass (Mx), QCD uncertainties can affect the best-fit mass by up to ti 14% (with large uncertainties for large DM masses), depending on the choice of Mx and the annihilation channel (bb over bar or W+W-), and (o -v) by up to ti 10%. For comparison, changes to the underlying diffusion parameters are found to be within 1%-5%, and the results are also quite resilient to the choice of cosmic-ray propagation model. These findings indicate that QCD uncertainties need to be included in future DM analyses. To facilitate full-fledged analyses, we provide the spectra in tabulated form including QCD uncertainties and code snippets to perform mass interpolations and quick DM fits. The code can be found in this GitHub [1] repository.
Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000985779900007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5532
Permanent link to this record
 

 
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R.
Title Identification of dark matter particles with LHC and direct detection data Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 5 Pages 055008 - 7pp
Keywords
Abstract (down) Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if weakly interacting massive particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe Omega(DM). We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection data, by making a simple Ansatz on the weakly interacting massive particles local density rho(0)((chi) over bar1), i.e., by assuming that the local density scales with the cosmological relic abundance, (rho(0)((chi) over bar1)/rho(DM)) = (Omega(0)((chi) over bar1)/Omega(DM)). We demonstrate this method in an explicit example in the context of a 24-parameter supersymmetric model, with a neutralino lightest supersymmetric particle in the stau coannihilation region. Our results show that future ton-scale direct detection experiments will allow to break degeneracies in the supersymmetric parameter space and achieve a significantly better reconstruction of the neutralino composition and its relic density than with LHC data alone.
Address [Bertone, G.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000281741400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 380
Permanent link to this record