|   | 
Details
   web
Records
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; Mamuzic, J.; Mitsou, V.A.; Ruiz de Austri, R.; Vento, V.; Vives, O.
Title Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC Type Journal Article
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 118 Issue 6 Pages 061801 - 6pp
Keywords
Abstract (down) MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: philippe.mermod@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000393747300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2969
Permanent link to this record
 

 
Author Caron, S.; Ruiz de Austri, R.; Zhang, Z.Y.
Title Mixture-of-Theories training: can we find new physics and anomalies better by mixing physical theories? Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 004 - 37pp
Keywords Specific BSM Phenomenology; Supersymmetry
Abstract (down) Model-independent search strategies have been increasingly proposed in recent years because on the one hand there has been no clear signal for new physics and on the other hand there is a lack of a highly probable and parameter-free extension of the standard model. For these reasons, there is no simple search target so far. In this work, we try to take a new direction and ask the question: bearing in mind that we have a large number of new physics theories that go beyond the Standard Model and may contain a grain of truth, can we improve our search strategy for unknown signals by using them “in combination”? In particular, we show that a signal hypothesis based on a large, intermingled set of many different theoretical signal models can be a superior approach to find an unknown BSM signal. Applied to a recent data challenge, we show that “mixture-of-theories training” outperforms strategies that optimize signal regions with a single BSM model as well as most unsupervised strategies. Applications of this work include anomaly detection and the definition of signal regions in the search for signals of new physics.
Address [Caron, Sascha; Zhang, Zhongyi] Radboud Univ Nijmegen, High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000943095100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5494
Permanent link to this record
 

 
Author Desai, N.; Domingo, F.; Kim, J.S.; Ruiz de Austri, R.; Rolbiecki, K.; Sonawane, M.; Wang, Z.S.
Title Constraining electroweak and strongly charged long-lived particles with CheckMATE Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 11 Pages 968 - 19pp
Keywords
Abstract (down) Long-lived particles have become a new frontier in the exploration of physics beyond the Standard Model. In this paper, we present the implementation of four types of long-lived particle searches, viz. displaced leptons, disappearing track, displaced vertex with either muons or with missing transverse energy, and heavy charged tracks. These four categories cover the signatures of a large range of physics models. We illustrate their potential for exclusion and discuss their mutual overlaps in mass-lifetime space for two simple phenomenological models involving either a U(1)-charged or a coloured scalar.
Address [Desai, Nishita] Tata Inst Fundamental Res, Dept Theoret Phys, Mumbai 400005, Maharashtra, India, Email: nishita.desai@tifr.res.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000714374500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5015
Permanent link to this record
 

 
Author Boubekeur, L.; Choi, K.Y.; Ruiz de Austri, R.; Vives, O.
Title The degenerate gravitino scenario Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 005 - 26pp
Keywords dark matter theory; leptogenesis; supersymmetry and cosmology; cosmology of theories beyond the SM
Abstract (down) In this work, we explore the “degenerate gravitino” scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogenesis are reached for small splittings of order 10(-2) GeV. While for stau NLSP, temperatures of T-RH similar or equal to 4 x 10(9) GeV can be obtained even for splittings of order of tens of GeVs. This “degenerate gravitino” scenario offers a possible way out to the gravitino problem for thermal leptogenesis in supersymmetric theories.
Address [Boubekeur, Lotfi; Vives, Oscar] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Spain, Email: lotfi.boubekeur@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000277684600028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 453
Permanent link to this record
 

 
Author van Beekveld, M.; Caron, S.; Ruiz de Austri, R.
Title The current status of fine-tuning in supersymmetry Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 147 - 41pp
Keywords Supersymmetry Phenomenology
Abstract (down) In this paper, we minimize and compare two different fine-tuning measures in four high-scale supersymmetric models that are embedded in the MSSM. In addition, we determine the impact of current and future dark matter direct detection and collider experiments on the fine-tuning. We then compare the low-scale electroweak measure with the high-scale Barbieri-Giudice measure. We find that they reduce to the same value when the higgsino parameter drives the degree of fine-tuning. We also find spectra where the high-scale measure turns out to be lower than the low-scale measure. Depending on the high-scale model and fine-tuning definition, we find a minimal fine-tuning of 3-38 (corresponding to O(10-1)%) for the low-scale measure, and 63-571 (corresponding to O(1-0.1)%) for the high-scale measure. We stress that it is too early to conclude on the fate of supersymmetry, based only on the fine-tuning paradigm.
Address [van Beekveld, Melissa; Caron, Sascha] Radboud Univ Nijmegen, Theoret High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000512011100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4275
Permanent link to this record