toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agarwalla, S.K.; Lombardi, F.; Takeuchi, T. url  doi
openurl 
  Title Constraining non-standard interactions of the neutrino with Borexino Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 079 - 21pp  
  Keywords Neutrino Physics; Solar and Atmospheric Neutrinos; Beyond Standard Model  
  Abstract (down) We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainties in the Be-7 solar neutrino flux and the mixing angle theta(23), and backgrounds due to Kr-85 and Bi-210 beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the Kr-85 background.  
  Address [Agarwalla, Sanjib Kumar] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000313124000014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1317  
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Degee, A.; Dorame, L.; Hirsch, M. url  doi
openurl 
  Title Systematic classification of two-loop realizations of the Weinberg operator Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 040 - 41pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract (down) We systematically analyze the d = 5 Weinberg operator at 2-loop order. Using a diagrammatic approach, we identify two different interesting categories of neutrino mass models: (i) Genuine 2-loop models for which both, tree-level and 1-loop contributions, are guaranteed to be absent. And (ii) finite 2-loop diagrams, which correspond to the 1-loop generation of some particular vertex appearing in a given 1-loop neutrino mass model, thus being effectively 2-loop. From the large list of all possible 2-loop diagrams, the vast majority are infinite corrections to lower order neutrino mass models and only a moderately small number of diagrams fall into these two interesting classes. Moreover, all diagrams in class (i) are just variations of three basic diagrams, with examples discussed in the literature before. Similarly, we also show that class (ii) diagrams consists of only variations of these three plus two more basic diagrams. Finally, we show how our results can be consistently and readily used in order to construct two-loop neutrino mass models.  
  Address [Sierra, D. Aristizabal; Degee, A.] Univ Liege, IFPA, Dept AGO, B-4000 Liege 1, Belgium, Email: daristizabal@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000351365700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2167  
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Three-family left-right symmetry with low-scale seesaw mechanism Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 100 - 10pp  
  Keywords Beyond Standard Model; Guage Symmetry; Neutrino Physics  
  Abstract (down) We suggest a new left-right symmetric model implementing a low-scale see-saw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the “next” expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting Z' gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.  
  Address [Reig, Mario; Valle, Jose W. F.; Vaquera-Araujo, C. A.] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mareiglo@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402841900003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3168  
Permanent link to this record
 

 
Author Durieux, G.; Perello, M.; Vos, M.; Zhang, C. url  doi
openurl 
  Title Global and optimal probes for the top-quark effective field theory at future lepton colliders Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 168 - 68pp  
  Keywords Beyond Standard Model; Effective Field Theories; Heavy Quark Physics  
  Abstract (down) We study the sensitivity to physics beyond the standard model of precise top-quark pair production measurements at future lepton colliders. A global effective-field-theory approach is employed, including all ten dimension-six operators of the Warsaw basis which involve a top-quark and give rise to tree-level amplitudes that interfere with standard-model e+e-tt ones in the limit of vanishing b-quark mass. Four-fermion and CP-violating contributions are taken into account. Circular-collider-, ILC- and CLIC-like benchmark run scenarios are examined. We compare the constraining power of various observables to a set of statistically optimal ones which maximally exploit the information contained in the fully differential bW+ distribution. The enhanced sensitivity gained on the linear contributions of dimension-six operators leads to bounds that are insensitive to quadratic ones. Even with statistically optimal observables, two centre-of-mass energies are required for constraining simultaneously two- and four-fermion operators. The impact of the centre-of-mass energy lever arm is discussed, that of beam polarization as well. A realistic estimate of the precision that can be achieved in ILC- and CLIC-like operating scenarios yields individual limits on the electroweak couplings of the top quark that are one to three orders of magnitude better than constraints set with Tevatron and LHC run I data, and three to two hundred times better than the most optimistic projections made for the high-luminosity phase of the LHC. Clean global constraints can moreover be obtained at lepton colliders, robustly covering the multidimensional effective-field-theory space with minimal model dependence.  
  Address [Durieux, Gauthier] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: gauthier.durieux@desy.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448812600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3786  
Permanent link to this record
 

 
Author Leitner, R.; Malinsky, M.; Roskovec, B.; Zhang, H. url  doi
openurl 
  Title Non-standard antineutrino interactions at Daya Bay Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 001 - 26pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract (down) We study the prospects of pinning down the effects of non-standard antineutrino interactions in the source and in the detector at the Daya Bay neutrino facility. It is well known that if the non-standard interactions in the detection process are of the same type as those in the production, their net effect can be subsumed into a mere shift in the measured value of the leptonic mixing angle theta(13). Relaxing this assumption, the ratio of the antineutrino spectra measured by the Daya Bay far and near detectors is distorted in a characteristic way, and good fits based on the standard oscillation hypothesis are no longer viable. We show that, under certain conditions, three years of Daya Bay running can be sufficient to provide a clear hint of non-standard neutrino physics.  
  Address [Leitner, Rupert; Roskovec, Bedrich] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague 8, Czech Republic, Email: Rupert.Leitner@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298847200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 922  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva