toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barreiros, D.M.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Minimal scoto-seesaw mechanism with spontaneous CP violation Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 249 - 21pp  
  Keywords Neutrino Physics; CP violation  
  Abstract (down) We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.  
  Address [Barreiros, D. M.; Joaquim, F. R.] Univ Lisbon, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: debora.barreiros@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646917200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4814  
Permanent link to this record
 

 
Author Nada, A.; Ramos, A. url  doi
openurl 
  Title An analysis of systematic effects in finite size scaling studies using the gradient flow Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 1 Pages 1 - 19pp  
  Keywords  
  Abstract (down) We propose a new strategy for the determination of the step scaling function sigma (u) in finite size scaling studies using the gradient flow. In this approach the determination of sigma (u) is broken in two pieces: a change of the flow time at fixed physical size, and a change of the size of the system at fixed flow time. Using both perturbative arguments and a set of simulations in the pure gauge theory we show that this approach leads to a better control over the continuum extrapolations. Following this new proposal we determine the running coupling at high energies in the pure gauge theory and re-examine the determination of the Lambda -parameter, with special care on the perturbative truncation uncertainties.  
  Address [Nada, Alessandro] DESY, John von Neumann Inst Comp NIC, Platanenallee 6, D-15738 Zeuthen, Germany, Email: alberto.ramos@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606481000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4678  
Permanent link to this record
 

 
Author Albandea, D.; Hernandez, P.; Ramos, A.; Romero-Lopez, F. url  doi
openurl 
  Title Topological sampling through windings Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 10 Pages 873 - 12pp  
  Keywords  
  Abstract (down) We propose a modification of the Hybrid Monte Carlo (HMC) algorithm that overcomes the topological freezing of a two-dimensional U(1) gauge theory with and without fermion content. This algorithm includes reversible jumps between topological sectors – winding steps – combined with standard HMC steps. The full algorithm is referred to as winding HMC (wHMC), and it shows an improved behaviour of the autocorrelation time towards the continuum limit. We find excellent agreement between the wHMC estimates of the plaquette and topological susceptibility and the analytical predictions in the U(1) pure gauge theory, which are known even at finite beta. We also study the expectation values in fixed topological sectors using both HMC and wHMC, with and without fermions. Even when topology is frozen in HMC – leading to significant deviations in topological as well as non-topological quantities – the two algorithms agree on the fixed-topology averages. Finally, we briefly compare the wHMC algorithm results to those obtained with master-field simulations of size L similar to 8 x 10(3).  
  Address [Albandea, David; Hernandez, Pilar; Ramos, Alberto; Romero-Lopez, Fernando] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: David.Albandea@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000703880600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4979  
Permanent link to this record
 

 
Author Ding, G.J.; Lu, J.N.; Valle, J.W.F. url  doi
openurl 
  Title Trimaximal neutrino mixing from scotogenic A(4) family symmetry Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 815 Issue Pages 136122 - 13pp  
  Keywords  
  Abstract (down) We propose a flavor theory of leptons implementing an A(4) family symmetry. Our scheme provides a simple way to derive trimaximal neutrino mixing from first principles, leading to simple and testable predictions for neutrino mixing and CP violation. Dark matter mediates neutrino mass generation, as in the simplest scotogenic model.  
  Address [Ding, Gui-Jun] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China, Email: dinggj@ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000632729200019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4778  
Permanent link to this record
 

 
Author Eberhardt, O.; Peñuelas, A.; Pich, A. url  doi
openurl 
  Title Global fits in the Aligned Two-Higgs-Doublet model Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 005 - 37pp  
  Keywords Phenomenology of Field Theories in Higher Dimensions  
  Abstract (down) We present the results of a global fit to the Aligned Two-Higgs Doublet Model, assuming that there are no new sources of CP violation beyond the quark mixing matrix. We use the most constraining flavour observables, electroweak precision measurements and the available data on Higgs signal strengths and collider searches for heavy scalars, together with the theoretical requirements of perturbativity and positivity of the scalar potential. The combination of all these constraints restricts the values of the scalar masses, the couplings of the scalar potential and the flavour-alignment parameters. The numerical fits have been performed using the open-source HEPfit package.  
  Address [Eberhardt, Otto; Pich, Antonio] Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: otto.eberhardt.physics@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000753839400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5114  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva