Gallego Cadavid, A., Enea Romano, A., & Gariazzo, S. (2017). CMB anomalies and the effects of local features of the inflaton potential. Eur. Phys. J. C, 77(4), 242–9pp.
Abstract: Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales k = 0.002 Mpc(-1) and k = 0.0035 Mpc(-1), respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales.
|
Gariazzo, S. (2020). Constraining power of open likelihoods, made prior-independent. Eur. Phys. J. C, 80(6), 552–6pp.
Abstract: One of the most criticized features of Bayesian statistics is the fact that credible intervals, especially when open likelihoods are involved, may strongly depend on the prior shape and range. Many analyses involving open likelihoods are affected by the eternal dilemma of choosing between linear and logarithmic prior, and in particular in the latter case the situation is worsened by the dependence on the prior range under consideration. In this letter, we revive a simple method to obtain constraints that depend neither on the prior shape nor range and, using the tools of Bayesian model comparison, extend it to overcome the possible dependence of the bounds on the choice of free parameters in the numerical analysis. An application to the case of cosmological bounds on the sum of the neutrino masses is discussed as an example.
|
de Salas, P. F., Gariazzo, S., Lesgourgues, J., & Pastor, S. (2017). Calculation of the local density of relic neutrinos. J. Cosmol. Astropart. Phys., 09(9), 034–24pp.
Abstract: Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV. We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N – one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.
|
de Salas, P. F., Gariazzo, S., Martinez-Mirave, P., Pastor, S., & Tortola, M. (2021). Cosmological radiation density with non-standard neutrino-electron interactions. Phys. Lett. B, 820, 136508–9pp.
Abstract: Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations.
|
Di Valentino, E., Gariazzo, S., Giare, W., & Mena, O. (2023). Impact of the damping tail on neutrino mass constraints. Phys. Rev. D, 108(8), 083509–11pp.
Abstract: Model-independent mass limits assess the robustness of current cosmological measurements of the neutrino mass scale. Consistency between high-multipole and low-multiple cosmic microwave background observations measuring such scale further valuates the constraining power of present data. We derive here up-to-date limits on neutrino masses and abundances exploiting either the Data Release 4 of the Atacama Cosmology Telescope (ACT) or the South Pole Telescope polarization measurements from SPT-3G, envisaging different nonminimal background cosmologies and marginalizing over them. By combining these high-l observations with supernova Ia, baryon acoustic oscillations (BAO), redshift space distortions (RSD) and a prior on the reionization optical depth fromWMAP data, we find that the marginalized bounds are competitive with those from Planck analyses. We obtain Sigma m(nu) < 0.139 eV and N-eff = 2.82 +/- 0.25 in a dark energy quintessence scenario, both at 95% CL. These limits translate into Sigma m(nu) < 0.20 eV and N-eff = 2.79(-0.28)(+0.30) after marginalizing over a plethora of well-motivated fiducial models. Our findings reassess both the strength and the reliability of cosmological neutrino mass constraints.
|