|   | 
Details
   web
Records
Author Rinaldi, M.; Vento, V.
Title Scalar spectrum in a graviton soft wall model Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 12 Pages 125003 - 16pp
Keywords glueball; meson; spectrum; AdS; CFT
Abstract (down) In this study we present a unified phenomenological analysis of the scalar glueball and scalar meson spectra within an AdS/QCD framework in the bottom up approach. For this purpose we generalize the recently developed graviton soft-wall (GSW) model, which has shown an excellent agreement with the lattice QCD glueball spectrum, to a description of glueballs and mesons with a unique energy scale. In this scheme, dilatonic effects, are incorporated in the metric as a deformation of the AdS space. We apply the model also to the heavy meson spectra with success. We obtain quadratic mass equations for all scalar mesons while the glueballs satisfy an almost linear mass equation. Besides their spectra, we also discuss the mixing of scalar glueball and light scalar meson states within a unified framework: the GSW model. To this aim, the light-front (LF) holographic approach, which connects the mode functions of AdS/QCD to the LF wave functions, is applied. This relation provides the probabilistic interpretation required to properly investigate the mixing conditions.
Address [Rinaldi, Matteo] Univ Perugia, INFN, Dipartimento Fis & Geol, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000584306700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4587
Permanent link to this record
 

 
Author Andringa, S. et al; Capozzi, F.; Sorel, M.
Title Low-energy physics in neutrino LArTPCs Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 3 Pages 033001 - 60pp
Keywords physics; neutrino; LArTPC
Abstract (down) In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.
Address [Andringa, S.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal, Email: blittlej@iit.edu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000931327500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5502
Permanent link to this record
 

 
Author Altheimer, A. et al; Villaplana Perez, M.; Vos, M.
Title Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks Type Journal Article
Year 2012 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 39 Issue 6 Pages 063001 - 44pp
Keywords
Abstract (down) In this paper, we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as 'top taggers'. To facilitate further exploration, we have attempted to collect, harmonize and publish software implementations of these techniques.
Address [Altheimer, A.; Brooijmans, G.; Cholakian, A. E.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA, Email: lasquith@hep.anl.gov;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000304187900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1031
Permanent link to this record
 

 
Author Perez-Ramos, R.; Mathieu, V.; Sanchis-Lozano, M.A.
Title Three-particle correlations in QCD jets and beyond Type Journal Article
Year 2011 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 38 Issue 11 Pages 115007 - 34pp
Keywords
Abstract (down) In this paper, we present a detailed study of three-particle correlations in quark and gluon jets. We give theoretical results for this observable in the double logarithmic approximation and the modified leading logarithmic approximation. In both resummation schemes, we use the formalism of the generating functional and solve the evolution equations analytically from the steepest descent evaluation of the one-particle distribution. In addition, in this paper we include predictions beyond the limiting spectrum approximation and study this observable near the hump of the single inclusive distribution. We thus provide a further test of the local parton hadron duality and make predictions for the LHC. The computation of higher rank correlators is presented in the double logarithmic approximation and shown to be rather cumbersome.
Address [Perez-Ramos, R] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: redamy.perez@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000296375000008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 789
Permanent link to this record
 

 
Author Feng, J.L. et al; Garcia Soto, A.; Hirsch, M.
Title The Forward Physics Facility at the High-Luminosity LHC Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 3 Pages 030501 - 410pp
Keywords Forward Physics Facility; Large Hadron Collider; new particle searches; neutrinos; QCD; astroparticle physics; dark matter
Abstract (down) High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.
Address [Feng, Jonathan L.; Tsai, Yu-Dai; Bian, Jianming; Casper, David W.; Fieg, Max; Huang, Fei; Kuo, Jui-Lin; Wu, Wenjie] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: jlf@uci.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000934195400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5491
Permanent link to this record