|   | 
Details
   web
Records
Author de Gouvea, A.; De Romeri, V.; Ternes, C.A.
Title Combined analysis of neutrino decoherence at reactor experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 042 - 12pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract (down) Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We combine data from the short-baseline experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) and from the long baseline reactor experiment KamLAND to obtain the best current limit on the reactor antineutrino wave-packet width, sigma > 2.1 x 10(-4) nm at 90% CL. We also find that the determination of standard oscillation parameters is robust, i.e., it is mostly insensitive to the presence of hypothetical decoherence effects once one combines the results of the different reactor neutrino experiments.
Address [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA, Email: degouvea@northwestern.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000762304800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5150
Permanent link to this record
 

 
Author Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C.A.; Tortola, M.
Title Quasi-Dirac neutrino oscillations at DUNE and JUNO Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 3 Pages 035032 - 12pp
Keywords
Abstract (down) Quasi-Dirac neutrinos are obtained when the Lagrangian density of a neutrino mass model contains both Dirac and Majorana mass terms, and the Majorana terms are sufficiently small. This type of neutrino introduces new mixing angles and mass splittings into the Hamiltonian, which will modify the standard neutrino oscillation probabilities. In this paper, we focus on the case where the new mass splittings are too small to be measured, but new angles and phases are present. We perform a sensitivity study for this scenario for the upcoming experiments DUNE and JUNO, finding that they will improve current bounds on the relevant parameters. Finally, we also explore the discovery potential of both experiments, assuming that neutrinos are indeed quasi-Dirac particles.
Address [Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: anamiati@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000482944200007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4124
Permanent link to this record
 

 
Author Barenboim, G.; Ternes, C.A.; Tortola, M.
Title New physics vs new paradigms: distinguishing CPT violation from NSI Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 5 Pages 390 - 7pp
Keywords
Abstract (down) Our way of describing Nature is based on local relativistic quantum field theories, and then CPT symmetry, a natural consequence of Lorentz invariance, locality and hermiticity of the Hamiltonian, is one of the few if not the only prediction that all of them share. Therefore, testing CPT invariance does not test a particular model but the whole paradigm. Current and future long baseline experiments will assess the status of CPT in the neutrino sector at an unprecedented level and thus its distinction from similar experimental signatures arising from non-standard interactions is imperative. Whether the whole paradigm is at stake or just the standard model of neutrinos crucially depends on that.
Address [Barenboim, G.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000467183800003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4005
Permanent link to this record
 

 
Author Srivastava, R.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 778 Issue Pages 459-463
Keywords
Abstract (down) Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters theta(23) and delta(CP). We present the expected improved sensitivity on these parameters for different assumptions.
Address [Srivastava, Rahul; Ternes, Christoph A.; Tortola, Mariam; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: rahulsri@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000426436700063 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3512
Permanent link to this record
 

 
Author Forero, D.V.; Giunti, C.; Ternes, C.A.; Tortola, M.
Title Nonunitary neutrino mixing in short and long-baseline experiments Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 7 Pages 075030 - 11pp
Keywords
Abstract (down) Nonunitary neutrino mixing in the light neutrino sector is a direct consequence of type-I seesaw neutrino mass models. In these models, light neutrino mixing is described by a submatrix of the full lepton mixing matrix and, then, it is not unitary in general. In consequence, neutrino oscillations are characterized by additional parameters, including new sources of CP violation. Here we perform a combined analysis of short and long-baseline neutrino oscillation data in this extended mixing scenario. We did not find a significant deviation from unitary mixing, and the complementary data sets have been used to constrain the nonunitarity parameters. We have also found that the T2K and NOvA tension in the determination of the Dirac CP-phase is not alleviated in the context of nonunitary neutrino mixing.
Address [Forero, D. V.] Univ Medellin, Carrera 87 N 30-65, Medellin, Colombia, Email: dvanegas@udem.edu.co;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000753716600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5121
Permanent link to this record