|   | 
Details
   web
Records
Author Dev, A.; Machado, P.A.N.; Martinez-Mirave, P.
Title Signatures of ultralight dark matter in neutrino oscillation experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 094 - 23pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract (down) We study how neutrino oscillations could probe the existence of ultralight bosonic dark matter. Three distinct signatures on neutrino oscillations are identified, depending on the mass of the dark matter and the specific experimental setup. These are time modulation signals, oscillation probability distortions due to fast modulations, and fast varying matter effects. We provide all the necessary information to perform a bottom-up, model-independent experimental analysis to probe such scenarios. Using the future DUNE experiment as an example, we estimate its sensitivity to ultralight scalar dark matter. Our results could be easily used by any other oscillation experiment.
Address [Dev, Abhish] Univ Maryland, Maryland Ctr Fundamental Phys, Dept Phys, College Pk, MD 20742 USA, Email: adev@umd.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640855200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4794
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.
Title Global constraints on neutral-current generalized neutrino interactions Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 061 - 26pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract (down) We study generalized neutrino interactions (GNI) for several neutrino processes, including neutrinos from electron-positron collisions, neutrino-electron scattering, and neutrino deep inelastic scattering. We constrain scalar, pseudoscalar, and tensor new physics effective couplings, based on the standard model effective field theory at low energies. We have performed a global analysis for the different effective couplings. We also present the different individual constraints for each effective parameter (scalar, pseudoscalar, and tensor). Being a global analysis, we show robust results for the restrictions on the different GNI parameters and improve some of these bounds.
Address [Escrihuela, F. J.] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000675383900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4911
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Rocha-Moran, P.; Vicente, A.
Title Minimal 3-loop neutrino mass models and charged lepton flavor violation Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 067 - 37pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract (down) We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models “minimal” since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow regions of their parameter spaces.
Address [Cepedello, Ricardo; Hirsch, Martin; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000565216600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4522
Permanent link to this record
 

 
Author Blankenburg, G.; Morisi, S.
Title Fermion masses and mixing with tri-bimaximal in SO(10) with type-I seesaw Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 016 - 18pp
Keywords Neutrino Physics; GUT
Abstract (down) We study a class of models for tri-bimaximal neutrino mixing in SO(10) grand unified SUSY framework. Neutrino masses arise from both type-I and type-II seesaw mechanisms. We use dimension five operators in order to not spoil tri-bimaximal mixing by means of type-I contribution in the neutrino sector. We show that it is possible to fit all fermion masses and mixings including also the recent T2K result as deviation from the tri-bimaximal.
Address [Blankenburg, G.] Univ Roma Tre, Dipartimento Fis E Amaldi, I-00146 Rome, Italy, Email: blankenburg@fis.uniroma3.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000300181800016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 970
Permanent link to this record
 

 
Author Barenboim, G.; Rasero, J.
Title Baryogenesis from a right-handed neutrino condensate Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 097 - 15pp
Keywords Cosmology of Theories beyond the SM; Neutrino Physics
Abstract (down) We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295300025 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 622
Permanent link to this record