|   | 
Details
   web
Records
Author de Medeiros Varzielas, I.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.
Title Controlled flavor violation in the MSSM from a unified Delta(27) flavor symmetry Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 047 - 22pp
Keywords Beyond Standard Model; Supersymmetric Standard Model; Quark Masses and SM Parameters
Abstract (down) We study the phenomenology of a unified supersymmetric theory with a flavor symmetry Delta(27). The model accommodates quark and lepton masses, mixing angles and CP phases. In this model, the Dirac and Majorana mass matrices have a unified texture zero structure in the (1, 1) entry that leads to the Gatto-Sartori-Tonin relation between the Cabibbo angle and ratios of the masses in the quark sectors, and to a natural departure from zero of the theta 13(l) angle in the lepton sector. We derive the flavor structures of the trilinears and soft mass matrices, and show their general non-universality. This causes large flavor violating effects. As a consequence, the parameter space for this model is constrained, allowing it to be (dis)proven by flavor violation searches in the next decade. Although the results are model specific, we compare them to previous studies to show similar flavor effects (and associated constraints) are expected in general in supersymmetric flavor models, and may be used to distinguish them.
Address [Varzielas, Ivo de Medeiros] Univ Lisbon, Inst Super Tecn, Dept Fis, CFTP, Ave Rovisco Pais 1, P-1049 Lisbon, Portugal, Email: ivo.de@udo.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000444676300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3735
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M.
Title A(FB) in the SMEFT: precision Z physics at the LHC Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 021 - 27pp
Keywords Beyond Standard Model; Effective Field Theories
Abstract (down) We study the forward-backward asymmetry A(FB) in pp -> l(+)l(-) at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current A(FB) data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.
Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000683833600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4935
Permanent link to this record
 

 
Author Donini, A.; Gomez-Cadenas, J.J.; Meloni, D.
Title The tau-contamination of the golden muon sample at the Neutrino Factory Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 095 - 16pp
Keywords Neutrino Physics; Beyond Standard Model; CP violation
Abstract (down) We study the contribution of nu(e) -> nu(tau) -> tau -> μtransitions to the wrong-sign muon sample of the golden channel of the Neutrino Factory. Muons from tau decays are not really a background, since they contain information from the oscillation signal, and represent a small fraction of the sample. However, if not properly handled they introduce serious systematic error, in particular if the detector/analysis are sensitive to muons of low energy. This systematic effect is particularly troublesome for large theta(13) >= 1 degrees and prevents the use of the Neutrino Factory as a precision facility for large theta(13). Such a systematic error disappears if the tau contribution to the golden muon sample is taken into account. The fact that the fluxes of the Neutrino Factory are exactly calculable permits the knowledge of the tau sample due to the nu(e) -> nu(tau) oscillation. We then compute the contribution to the muon sample arising from this sample in terms of the apparent muon energy. This requires the computation of a migration matrix M-ij which describes the contributions of the tau neutrinos of a given energy E-i, to the muon neutrinos of an apparent energy E-j. We demonstrate that applying M-ij to the data permits the full correction of the otherwise intolerable systematic error.
Address [Donini, A.] Univ Autonoma Madrid, CSIC, IFT, E-28049 Madrid, Spain, Email: andrea.donini@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000287939200023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 621
Permanent link to this record
 

 
Author Ilisie, V.
Title New Barr-Zee contributions to (g-2)(mu) in two-Higgs-doublet models Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 077 - 27pp
Keywords Higgs Physics; Beyond Standard Model
Abstract (down) We study the contribution of new sets of two-loop Barr-Zee type diagrams to the anomalous magnetic moment of the muon within the two-Higgs-doublet model framework. We show that some of these contributions can be quite sizeable for a large region of the parameter space and can significantly reduce, and in some cases even explain, the discrepancy between the theoretical prediction and the experimentally measured value of this observable. Analytical expressions are given for all the calculations performed in this work.
Address Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: ilisiev@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000354724900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2231
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T.
Title The minimal 3+2 neutrino model versus oscillation anomalies Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 161 - 20pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract (down) We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard 3 nu model and similarly to the 3 + 2 phenomenological models, even though the number of free parameters is much smaller than in the latter. Accounting for the anomalies in the minimal model favours a normal hierarchy of the light states and requires a large reactor angle, in agreement with recent measurements. Our analysis of the model employs a new parametrization of seesaw models that extends the Casas-Ibarra one to regimes where higher order corrections in the light-heavy mixings are significant.
Address [Donini, A.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: andrea.donini@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307299800039 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1161
Permanent link to this record