|   | 
Details
   web
Records
Author Galli, P.; Goldstein, K.; Katmadas, S.; Perz, J.
Title First-order flows and stabilisation equations for non-BPS extremal black holes Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 070 - 28pp
Keywords Black Holes in String Theory; Supergravity Models
Abstract (down) We derive a generalised form of flow equations for extremal static and rotating non-BPS black holes in four-dimensional ungauged N = 2 supergravity coupled to vector multiplets. For particular charge vectors, we give stabilisation equations for the scalars, analogous to the BPS case, describing full known solutions. Based on this, we propose a generic ansatz for the stabilisation equations, which surprisingly includes ratios of harmonic functions.
Address [Galli, P] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: Pietro.Galli@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000293136500070 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 746
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Charged BTZ-type solutions in Eddington-inspired Born-Infeld gravity Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 025 - 23pp
Keywords modified gravity; Exact solutions; black holes and black hole thermodynamics in GR and beyond; Wormholes
Abstract (down) We construct an axially symmetric solution of Eddington-inspired Born-Infeld gravity coupled to an electromagnetic field in 2 + 1 dimensions including a (negative) cosmological constant term. This is achieved by using a recently developed mapping procedure that allows to generate solutions in certain families of metric-affine gravity theories starting from a known seed solution of General Relativity, which in the present case corresponds to the electrically charged Banados-Teitelboim-Zanelli (BTZ) solution. We discuss the main features of the new configurations, including the modifications to the ergospheres and horizons, the emergence of wormhole structures, and the consequences for the regularity (or not) of these space-times via geodesic completeness.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, Plaza Ciencias S-N, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000727716400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5050
Permanent link to this record
 

 
Author Alencar, G.; Estrada, M.; Muniz, C.R.; Olmo, G.J.
Title Dymnikova GUP-corrected black holes Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 100 - 23pp
Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; GR black holes; modified gravity; quantum black holes
Abstract (down) We consider the impact of Generalized Uncertainty Principle (GUP) effects on the Dymnikova regular black hole. The minimum length scale introduced by the GUP modifies the energy density associated with the gravitational source, referred to as the Dymnikova vacuum, based on its analogy with the gravitational counterpart of the Schwinger effect. We present an approximated analytical solution (together with exact numerical results for comparison) that encompasses a wide range of black hole sizes, whose properties crucially depend on the ratio between the de Sitter core radius and the GUP scale. The emergence of a wormhole inside the de Sitter core in the innermost region of the object is one of the most relevant features of this family of solutions. Our findings demonstrate that these solutions remain singularity free, confirming the robustness of the Dymnikova regular black hole under GUP corrections. Regarding energy conditions, we find that the violation of the strong, weak, and null energy conditions which is characteristic of the pure Dymnikova case does not occur at Planckian scales in the GUP corrected solution. This contrast suggests a departure from conventional expectations and highlights the influence of quantum corrections and the GUP in modifying the energy conditions near the Planck scale.
Address [Alencar, G.; Olmo, Gonzalo J.] Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil, Email: geova@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001121623400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5868
Permanent link to this record
 

 
Author Afonso, V.I.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title An infinite class of exact rotating black hole metrics of modified gravity Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 052 - 14pp
Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract (down) We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.
Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Academ Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000776994500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5185
Permanent link to this record
 

 
Author Galli, P.; Ortin, T.; Perz, J.; Shahbazi, C.S.
Title Black-hole solutions of N=2, d=4 supergravity with a quantum correction, in the H-FGK formalism Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 157 - 37pp
Keywords Black Holes in String Theory; Supersymmetry and Duality; Black Holes
Abstract (down) We apply the H-FGK formalism to the study of some properties of a general class of black holes in N = 2 supergravity in four dimensions that correspond to the harmonic and hyperbolic ansatze and we obtain explicit extremal and non-extremal solutions for the t(3) model with and without a quantum correction. Not all solutions of the corrected model (quantum black holes), including in particular a solution with a single q(1) charge, have a regular classical limit.
Address [Galli, Pietro] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: Pietro.Galli@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000321208800072 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1541
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title The Hawking Effect in the Particles-Partners Correlations Type Journal Article
Year 2023 Publication Physics Abbreviated Journal Physics
Volume 5 Issue 4 Pages 968-982
Keywords quantum fields in curved space; black holes; Hawking radiation; correlations across the horizon
Abstract (down) We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001130983900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5858
Permanent link to this record
 

 
Author Santos, A.C.L.; Muniz, C.R.; Maluf, R.V.
Title Yang-Mills Casimir wormholes in D=2+1 Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 022 - 24pp
Keywords Wormholes; Exact solutions; black holes and black hole thermodynamics in GR and beyond; gravity
Abstract (down) This work presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressures related to the quantum vacuum fluctuations in Yang-Mills (Y-M) theory. We begin by analyzing the noninteracting Y-M Casimir wormholes, initially considering an arbitrary state parameter omega and determine a simple constant wormhole shape function. Next, we introduce a new methodology for deforming the state parameter to find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of omega = 2. Then, we investigate the wormhole curvature properties, energy conditions, and stability. Furthermore, we discover a novel family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and traversable wormhole solutions. Finally, we examine the energy conditions and stability of solutions in the interacting scenario and compare to the noninteracting case.
Address [Santos, Alana C. L.; Maluf, Roberto V.] Univ Fed Ceara UFC, Departamento Fis, Campus Pici,6030, BR-60455760 Fortaleza, Ceara, Brazil, Email: alanasantos@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001196198800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6031
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime Type Journal Article
Year 2024 Publication Universe Abbreviated Journal Universe
Volume 10 Issue 1 Pages 18 - 14pp
Keywords Hawking radiation; Unruh vacuum; Reissner-Nordstrom black holes
Abstract (down) The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner-Nordstrom black hole (both extremal and not), highlighting the similarities and striking differences.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001151025300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5914
Permanent link to this record
 

 
Author Fernandez-Silvestre, D.; Foo, J.; Good, M.R.R.
Title On the duality of Schwarzschild-de Sitter spacetime and moving mirror Type Journal Article
Year 2022 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 39 Issue 5 Pages 055006 - 18pp
Keywords QFT in curved spacetime; black holes; cosmological horizons; moving mirrors
Abstract (down) The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.
Address [Fernandez-Silvestre, Diego] Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, Burjassot 46100, Spain, Email: diefer2@alumni.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000754064600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5130
Permanent link to this record
 

 
Author Olmo, G.J.; Rosa, J.L.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title Shadows and photon rings of regular black holes and geonic horizonless compact objects Type Journal Article
Year 2023 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 40 Issue 17 Pages 174002 - 37pp
Keywords black holes; compact objects; photon rings; shadows; metric-affine gravity; Born-Infeld gravity; regular solutions
Abstract (down) The optical appearance of a body compact enough to feature an unstable bound orbit, when surrounded by an accretion disk, is expected to be dominated by a luminous ring of radiation enclosing a central brightness depression typically known as the shadow. Despite observational limitations, the rough details of this picture have been now confirmed by the results of the Event Horizon Telescope (EHT) Collaboration on the imaging of the M87 and Milky Way supermassive central objects. However, the precise characterization of both features-ring and shadow-depends on the interaction between the background geometry and the accretion disk, thus being a fertile playground to test our theories on the nature of compact objects and the gravitational field itself in the strong-field regime. In this work we use both features in order to test a continuous family of solutions interpolating between regular black holes and horizonless compact objects, which arise within the Eddington-inspired Born-Infeld theory of gravity, a viable extension of Einstein's general relativity (GR). To this end we consider seven distinctive classes of such configurations (five black holes and two traversable wormholes) and study their optical appearances under illumination by a geometrically and optically thin accretion disk, emitting monochromatically with three analytic intensity profiles previously suggested in the literature. We build such images and consider the sub-ring structure created by light rays crossing the disk more than once and existing on top of the main ring of radiation. We discuss in detail the modifications as compared to their GR counterparts, the Lyapunov exponents of unstable nearly-bound orbits, as well as the differences between black hole and traversable wormholes for the three intensity profiles. In addition we use the claim by the EHT Collaboration on the radius of the bright ring acting (under proper calibrations) as a proxy for the radius of the shadow itself to explore the parameter space of our solutions compatible with such a result.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: drubiera@ucm.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001043720300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5600
Permanent link to this record