toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caputo, A.; Sberna, L.; Toubiana, A.; Babak, S.; Barausse, E.; Marsat, S.; Pani, P. url  doi
openurl 
  Title Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart Type Journal Article
  Year 2020 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 892 Issue 2 Pages 90 - 13pp  
  Keywords  
  Abstract (down) We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i).stellar-origin black-hole binaries.(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave (GW) observatories within weeks/months; and (ii) intermediate-mass black-hole binaries.(IMBHBs) in the LISA band only. Because of the large number of observable GW cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the GW phase at negative (-4) post-Newtonian order, being thus dominant for binaries at large separations. Accretion at the Eddington or at super-Eddington rate will leave a detectable imprint on the dynamics of SOBHBs. For super-Eddington rates and a 10 yr mission, a multiwavelength strategy with LISA and a ground-based interferometer can detect about 10 (a few) SOBHB events for which the accretion rate can be measured at 50% (10%) level. In all cases, the sky position can be identified within much less than 0.4 deg(2) uncertainty. Likewise, accretion at greater than or similar to 100% of the Eddington rate can be measured in IMBHBs up to redshift z approximate to 0.1, and the position of these sources can be identified within less than 0.01 deg(2) uncertainty. Altogether, a detection of SOBHBs or IMBHBs would allow for targeted searches of electromagnetic counterparts to black-hole mergers in gas-rich environments with future X-ray detectors (such as Athena) and/or radio observatories (such as SKA).  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000619108700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4709  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title HAWC Study of the Ultra-high-energy Spectrum of MGRO J1908+06 Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 928 Issue 2 Pages 116 - 13pp  
  Keywords  
  Abstract (down) We report TeV gamma-ray observations of the ultra-high-energy source MGRO J1908+06 using data from the High Altitude Water Cherenkov Observatory. This source is one of the highest-energy known gamma-ray sources, with emission extending past 200 TeV. Modeling suggests that the bulk of the TeV gamma-ray emission is leptonic in nature, driven by the energetic radio-faint pulsar PSR J1907+0602. Depending on what assumptions are included in the model, a hadronic component may also be allowed. Using the results of the modeling, we discuss implications for detection prospects by multi-messenger campaigns.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: kmalone@lanl.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776453700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5187  
Permanent link to this record
 

 
Author Johannesson, G.; Ruiz de Austri, R.; Vincent, A.C.; Moskalenko, I.V.; Orlando, E.; Porter, T.A.; Strong, A.W.; Trotta, R.; Feroz, F.; Graff, P.; Hobson, M.P. url  doi
openurl 
  Title Bayesian analysis of cosmic-ray propagation: evidence against homogeneous diffusion Type Journal Article
  Year 2016 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 824 Issue 1 Pages 16 - 19pp  
  Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical  
  Abstract (down) We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, (p) over bar and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, (p) over bar, and He data are significantly different from those that fit light elements, including the B/C and Be-10/Be-9 secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.  
  Address [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377937300016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2727  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The first combined search for neutrino point-sources in the Southern Hemisphere with the ANTARES and IceCube neutrino telescopes Type Journal Article
  Year 2016 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 823 Issue 1 Pages 65 - 12pp  
  Keywords astroparticle physics; neutrinos  
  Abstract (down) We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs.  
  Address [Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, E-46730 Gandia, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377216300065 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2709  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron Type Journal Article
  Year 2020 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 896 Issue 2 Pages L29 - 9pp  
  Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Cosmic ray sources; Supernova remnants; Gamma-ray observatories  
  Abstract (down) We present the detection of very-high-energy gamma-ray emission above 100 TeV from HAWC J2227+610 with the High-Altitude Water Cherenov Gamma-Ray Observatory (HAWC) observatory. Combining our observations with previously published results by the Very Energetic Radiation Imaging Telescope Array System (VERTIAS), we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.  
  Address [Albert, A.; Dingus, B. L.; Harding, J. P.; Malone, K.; Sinnis, G.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: hfleisch@mtu.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000542724600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4445  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva